Have a personal or library account? Click to login
Cladophora glomerata Extract and Static Magnetic Field Influences the Germination of Seeds and Multielemental Composition of Carrot Cover

Cladophora glomerata Extract and Static Magnetic Field Influences the Germination of Seeds and Multielemental Composition of Carrot

Open Access
|Jan 2021

References

  1. [1] du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3-14. DOI: 10.1016/j.scienta.2015.09.021.10.1016/j.scienta.2015.09.021
  2. [2] Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3-41. DOI: 10.1007/s11104-014-2131-8.10.1007/s11104-014-2131-8
  3. [3] Alam MZ, Braun G, Norrie J, Hodges DM. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can J Plant Sci. 2014;94:337-48. DOI: 10.4141/CJPS2013-135.10.4141/cjps2013-135
  4. [4] Szczepanek M, Ochmian I, Wszelaczyńska E, Pobereżny J, Keutgen AJ, Szczepanek M, et al. Effect of biostimulants and storage on the content of macroelements in storage roots of carrot. J Elem. 2015;20:1021-31. DOI: 10.5601/jelem.2015.20.1.768.10.5601/jelem.2015.20.1.768
  5. [5] Szczepanek M, Wilczewski E, Pobereżny J, Wszelaczyńska E, Ochmian I. Carrot root size distribution in response to biostimulant application. Acta Agric Scand Sect B - Soil Plant Sci. 2017;67:334-9. DOI: 10.1080/09064710.2017.1278783.10.1080/09064710.2017.1278783
  6. [6] Sanders DC, Ricotta JA, Hodges L. Improvement of carrot stands with plant biostimulants and fluid drilling. HortScience. 1990;25:181-3. DOI: 10.21273/HORTSCI.25.2.181.10.21273/HORTSCI.25.2.181
  7. [7] Grabowska A, Kunicki E, Sękara A, Kalisz A, Wojciechowska R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg Crop Res Bull. 2012;77:37-48. DOI: 10.2478/v10032-012-0014-1.10.2478/v10032-012-0014-1
  8. [8] Kwiatkowski CA, Kołodziej B, Woźniak A. Yield and quality parameters of carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. Acta Sci Pol Hortorum Cultus. 2013;12:55-68. Available from: http://www.hortorumcultus.actapol.net/pub/12_5_55.pdf
  9. [9] Kwiatkowski CA, Haliniarz M, Kołodziej B, Harasim E, Tomczyńska-Mleko M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J Elem. 2015;20:933-43. DOI: 10.5601/jelem.2014.19.4.812.10.5601/jelem.2014.19.4.812
  10. [10] Taha SS, Abdelaziz ME. Effect of different concentrations of seaweed extract on growth, yield and quality of two carrot (Daucus carota L.) cultivars. Curr Sci Int. 2015;4:750-9. Available from: http://www.curresweb.com/csi/csi/2015/750-759.pdf.
  11. [11] Polk C. Biological effects of low-level low-frequency electric and magnetic fields. IEEE Trans Educ. 1991;34:243-9. DOI: 10.1109/13.85082.10.1109/13.85082
  12. [12] Efthimiadou A, Katsenios N, Karkanis A, Papastylianou P, Triantafyllidis V, Travlos I, et al. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. Sci World J. 2014;ID 369745. DOI: 10.1155/2014/369745.10.1155/2014/369745410907325097875
  13. [13] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17:53-61. Available from: https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.
  14. [14] da Silva JAT, Dobranszki J. Magnetic fields: how is plant growth and development impacted? Protoplasma 2016;253:231-48. DOI: 10.1007/s00709-015-0820-7.10.1007/s00709-015-0820-725952081
  15. [15] Cieśla A, Kraszewski W, Skowron M, Syrek P. The effects of magnetic fields on seed germination. Prz Elektrotechniczny 2015;91:125-8. DOI: 10.15199/48.2015.01.25.10.15199/48.2015.01.25
  16. [16] Reina FG, Pascual LA, Fundora IA. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results. Bioelectromagnetics. 2001;22:596-602. DOI: 10.1002/bem.89.10.1002/bem.8911748678
  17. [17] Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167:149-56. DOI: 10.1016/j.jplph.2009.08.011.10.1016/j.jplph.2009.08.01119783321
  18. [18] Martinez E, Carbonell MV, Amaya JM. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology. 2000;19:271-7. DOI: 10.1081/JBC-100102118.10.1081/JBC-100102118
  19. [19] Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29:571-8. DOI: 10.1002/bem.20426.10.1002/bem.2042618512697
  20. [20] Occhipinti A, De Santis A, Maffei ME. Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci. 2014;19:1-4. DOI: 10.1016/j.tplants.2013.10.007.10.1016/j.tplants.2013.10.00724238701
  21. [21] Binhi VN. Theoretical concepts in magnetobiology. Electro- Magnetobiol. 2001;20:43-58. DOI: 10.1081/JBC-100103159.10.1081/JBC-100103159
  22. [22] Rochalska M, Grabowska-Topczewska K, Mackiewicz A. Influence of alternating low frequency magnetic field on improvement of seed quality. Int Agrophysics. 2011;25:265-9. Available from: http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2011_25_3_265.pdf.
  23. [23] Maffei ME. Plant responses to electromagnetic fields. In: Greenebaum B, Barnes F, editors. Biol. Med. Asp. Electromagn. fields. Fourth ed. Boca Raton: CRC Press, Taylor Francis Group; 2019: 89-109. DOI: 10.1201/9781315221557.10.1201/9781315221557
  24. [24] Lednev VV. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 1991;12:71-5. DOI: 10.1002/bem.2250120202.10.1002/bem.22501202022039557
  25. [25] Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, Włodarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2.10.1007/s11738-015-1802-2
  26. [26] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in Faba bean (Vicia faba L. spp. Minor). J Plant Growth Regul. 2019;38:1153-60. DOI: 10.1007/s00344-019-09920-1.10.1007/s00344-019-09920-1
  27. [27] Labes MM. A possible explanation for the effect of magnetic fields on biological systems. Nature. 1966;211:968. DOI: 10.1038/211968a0.10.1038/211968a05968306
  28. [28] Ueno S. Biological effects of magnetic fields. IEEE Trans J Magn Japan. 1992;7:580-5. DOI: 10.1109/TJMJ.1992.4565451.10.1109/TJMJ.1992.4565451
  29. [29] Górski R, Dorna H, Rosińska A, Szopińska D, Wosiński S. Effects of electromagnetic fields and their shielding on the quality of carrot (Daucus carota L.) seeds. Ecol Chem Eng S. 2019;26:785-95. DOI: 10.1515/eces-2019-0055.10.1515/eces-2019-0055
  30. [30] Martínez E, Flórez M, Maqueda R, Carbonell MV, Amaya JM. Pea (Pisum sativum L.) and lentil (Lens culinaris, Medik) growth stimulation due to exposure to 125 and 250 mT stationary fields. Polish J Environ Stud. 2009;16:657-63. Available from: http://www.pjoes.com/Pea-Pisum-sativum-L-and-Lentil-Lens-culinaris-r-nMedik-Growth-Stimulation-Dueto,88281,0,2.html.
  31. [31] Ćirković S, Bačić J, Paunović N, Popović TB, Trbovich AM, Romčević N, et al. Influence of 340 mT static magnetic field on germination potential and mid-infrared spectrum of wheat. Bioelectromagnetics. 2017;38:533-40. DOI: 10.1002/bem.22057.10.1002/bem.2205728700087
  32. [32] Aladjadjiyan A. The use of physical methods for plant growing stimulation in Bulgaria. J Cent Eur Agric. 2007;8:369-80. Available from: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=30699.
  33. [33] Asgharipour MR, Omrani MR. Effects of seed pretreatment by stationary magnetic fields on germination and early growth of lentil. Aust J Basic Appl Sci. 2011;5:1650-4. Available from: http://www.ajbasweb.com/old/ajbas/2011/December-2011/1650-1654.pdf.
  34. [34] Iimoto M, Watanabe K, Fujiwara K. Effects of magnetic flux density and direction of the magnetic field on growth and CO2 exchange rate of potato plantlets in vitro. Acta Hortic. 1996:606-10. DOI: 10.17660/ActaHortic.1996.440.106.10.17660/ActaHortic.1996.440.10611541587
  35. [35] Turker M, Temirci C, Battal P, Erez ME. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyt - Ann Rei Bot. 2007;46:271-84. Available from: https://www.zobodat.at/pdf/PHY_46_2_0271-0284.pdf.
  36. [36] Dicarlo AL, Hargis MT, Penafiel LM, Litovitz TA. Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage. Int J Radiat Biol. 1999;75:1541-9. DOI: 10.1080/095530099139142.10.1080/09553009913914210622260
  37. [37] Kataria S, Baghel L, Guruprasad KN. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol. 2017;10:83-90. DOI: 10.1016/j.bcab.2017.02.010.10.1016/j.bcab.2017.02.010
  38. [38] De Souza A, Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27:247-57. DOI: 10.1002/bem.20206.10.1002/bem.2020616511881
  39. [39] Lewandowska S, Michalak I, Niemczyk K, Detyna J, Bujak H, Arik P. Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chem. 2019;17:516-25. DOI: 10.1515/chem-2019-0039.10.1515/chem-2019-0039
  40. [40] Maffei ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 2014;5:445. DOI: 10.3389/fpls.2014.00445.10.3389/fpls.2014.00445415439225237317
  41. [41] Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng Life Sci. 2019;19:986-99. DOI: 10.1002/elsc.201900039.10.1002/elsc.201900039699907032624988
  42. [42] Tretiak O, Blümler P, Bougas L. Variable single-axis magnetic-field generator using permanent magnets. AIP Adv. 2019;9:115312. DOI: 10.1063/1.5130896.10.1063/1.5130896
  43. [43] Qiu J, Liu X, Hu Z, Chang Q, Gao Y, Yang J, et al. Multi-directional electromagnetic vibration energy harvester using circular Halbach array. AIP Adv. 2017;7:056672. DOI: 10.1063/1.4978403.10.1063/1.4978403
  44. [44] Michalak I, Lewandowska S, Detyna J, Olsztyńska-Janus S, Bujak H, Pacholska P. The effect of macroalgal extracts and near infrared radiation on germination of soybean seedlings: preliminary research results. Open Chem. 2018;16:1066-76. DOI: 10.1515/chem-2018-0115.10.1515/chem-2018-0115
  45. [45] Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African J Bot. 2009;75:351-5. DOI: 10.1016/j.sajb.2008.10.009.10.1016/j.sajb.2008.10.009
  46. [46] Lodhi KK, Choubey NK, Dwivedi SK, Pal A, Kanwar PC. Impact of seaweed saps on growth, flowering behaviour and yield of soybean [Glycine max (L.) Merrill.]. Bioscan. 2015;10:479-83. Available from: http://www.thebioscan.in/Journal%20Supplement/101Sup45%20K.%20K.%20LODHI.pdf.
  47. [47] Michalak I, Mironiuk M, Marycz K. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One. 2018;13:e0205590. DOI: 10.1371/journal.pone.0205590.10.1371/journal.pone.0205590618887230321205
  48. [48] Marycz K, Michalak I, Kocherova I, Marędziak M, Weiss C. The Cladophora glomerata enriched by biosorption process in Cr(III) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV’s). Mar Drugs. 2017;15:385. DOI: 10.3390/md15120385.10.3390/md15120385574284529292726
  49. [49] Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul. 2013;32:31-52. DOI: 10.1007/s00344-012-9273-9.10.1007/s00344-012-9273-9
  50. [50] Alobwede E, Leake JR, Pandhal J. Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma. 2019;334:113-23. DOI: 10.1016/j.geoderma.2018.07.049.10.1016/j.geoderma.2018.07.049
  51. [51] Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci. 2004;129:523-9. DOI: 10.21273/JASHS.129.4.0523.10.21273/JASHS.129.4.0523
  52. [52] Sakhnini L. Influence of Ca2+ in biological stimulating effects of AC magnetic fields on germination of bean seeds. J Magn Magn Mater. 2007;310:e1032-4. DOI: 10.1016/j.jmmm.2006.11.077.10.1016/j.jmmm.2006.11.077
  53. [53] Shine MB, Guruprasad KN, Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32:474-84. DOI: 10.1002/bem.20656.10.1002/bem.2065621381047
  54. [54] Torres J, Socorro A, Hincapié E. Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics. 2018;39:343-51. DOI: 10.1002/bem.22120.10.1002/bem.2212029638006
  55. [55] Pietruszewski S, Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophysics. 2010;24:297-302. Available from: http://www.international-agrophysics.org/Effect-of-magnetic-field-on-germination-and-yield-of-wheat,106385,0,2.html.
  56. [56] Kavi PS. The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Sci Cult. 1977;43:405-406. Available from: https://agris.fao.org/agris-search/search.do?recordID=IN19780278775.
  57. [57] Martinez E, Carbonell MV, Flórez M, Amaya JM, Maqueda R. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int Agrophysics. 2009;23:45-9. Available from: http://www.international-agrophysics.org/Germination-of-tomato-seeds-Lycopersicon-esculentum-L-under-magnetic-field,106414,0,2.html.
  58. [58] Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys. 2012;49:63-70. Available from: https://pubmed.ncbi.nlm.nih.gov/22435146/.
  59. [59] Boe AA, Salunkhe DK. Effects of magnetic fields on tomato ripening. Nature. 1963;199:91-2. https://www.nature.com/articles/199091a0.10.1038/199091a0
  60. [60] Carbonell MV, Martinez E, Amaya JM. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro- Magnetobiol. 2000;19:121-8. DOI: 10.1081/JBC-100100303.10.1081/JBC-100100303
  61. [61] Radhakrishnan R, Kumari BDR. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. Indian J Biochem Biophys. 2013;50:312-7. Available from: https://pubmed.ncbi.nlm.nih.gov/24772951/.
  62. [62] Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;50:S25-8. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ6-0005-0019.
  63. [63] Shine MB, Guruprasad K, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33:428-37. DOI: 10.1002/bem.21702.10.1002/bem.2170222253132
  64. [64] Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993;51:410-6. DOI: 10.1002/jcb.2400510405.10.1002/jcb.24005104058388394
  65. [65] Strasserf RJ, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. 1995;61:32-42. DOI: 10.1111/j.1751-1097.1995.tb09240.x.10.1111/j.1751-1097.1995.tb09240.x
  66. [66] Govindje E. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131-60. DOI: 10.1071/PP9950131.10.1071/PP9950131
  67. [67] Albert KR, Mikkelsen TN, Ro-Poulsen H. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. Physiol Plant. 2005;124:208-26. DOI: 10.1111/j.1399-3054.2005.00502.x.10.1111/j.1399-3054.2005.00502.x
  68. [68] Jan L, Fefer D, Košmelj K, Gaberščik A, Jerman I. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor. Bioelectromagnetics. 2015;36:190-203. DOI: 10.1002/bem.21898.10.1002/bem.21898
  69. [69] Srikanth D. Influence of magnetic and electric field on germination attributes of chilli (Capsicum annum L.) seeds. Int J Pure Appl Biosci. 2018;6:496-501. DOI: 10.18782/2320-7051.6723.10.18782/2320-7051.6723
  70. [70] Iqbal M, ul Haq Z, Malik A, Ayoub CM, Jamil Y, Nisar J. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal Agric Biotechnol. 2016;5:30-7. DOI: 10.1016/j.bcab.2015.12.002.10.1016/j.bcab.2015.12.002
  71. [71] Torres J, Aranzazu-Osorio J, Restrepo-Parra E. Favourable and unfavourable effect of homogeneous static magnetic field on germination of Zea mays L (maize) seeds. J Agric Sci. 2019;11:90. DOI: 10.5539/jas.v11n2p90.10.5539/jas.v11n2p90
  72. [72] Es’kov EK, Darkov AV. Consequences of high-intensity magnetic effects on the early growth processes in plant seeds and the development of honeybees. Biol Bull Russ Acad Sci. 2003;30:512-6. DOI: 10.1023/A:1025858905362.10.1023/A:1025858905362
  73. [73] Bhatnagar D, Deb AR. Some aspects of pregermination exposure of wheat seeds to magnetic fields. II. Effect on some physiological process. Seed Res (New Delhi). 1977;5:129-37. Available from: https://www.researchgate.net/publication/287181702_Some_aspects_of_pregermination_exposure_of_wheat_seeds_to_magnetic_field_II_Effect_on_some_physiological_processes.
  74. [74] Zhadin MN. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001;22:27-45. DOI: 10.1002/1521-186x(200101)22:1<27::aid-bem4>3.0.co;2-2.10.1002/1521-186X(200101)22:1<27::AID-BEM4>3.0.CO;2-2
  75. [75] Barnes FS. Mechanisms for electric and magnetic fields effects on biological cells. IEEE Trans Magn. 2005;41:4219-24. DOI: 10.1109/TMAG.2005.855480.10.1109/TMAG.2005.855480
  76. [76] Kavi PS. The effect of non-homogeneous gradient magnetic field susceptibility values in situ ragi seed material. Mysore J Agric Sci. 1983;17:121-3. Available from: https://www.researchgate.net/publication/288043147_The_effect_of_non-homogeneous_gradient_magnetic_field_susceptibility_values_in_situ_ragi_seed_material.
  77. [77] Aceto H, Tobias C, Silver I. Some studies on the biological effects of magnetic fields. IEEE Trans Magn. 1970;6:368-73. DOI: 10.1109/TMAG.1970.1066813.10.1109/TMAG.1970.1066813
DOI: https://doi.org/10.2478/eces-2020-0040 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 629 - 641
Published on: Jan 29, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Izabela Michalak, Annika Bartniczak, Sylwia Baśladyńska, Sylwia Lewandowska, Jerzy Detyna, Michał Łoziński, Katarzyna Niemczyk, Henryk Bujak, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.