Have a personal or library account? Click to login
Preliminary Results of the Temperature Distribution Measurements Around the Vertical Ground Heat Exchangers Tubes Cover

Preliminary Results of the Temperature Distribution Measurements Around the Vertical Ground Heat Exchangers Tubes

Open Access
|Jan 2021

References

  1. [1] Zhao Y, Pang Z, Huang Y., Ma Z. An efficient hybrid model for thermal analysis of deep borehole heat exchangers. Geotherm Energy. 2020;8(18). DOI: 10.1186/s40517-020-00170-z.10.1186/s40517-020-00170-z
  2. [2] Rad FM, Fung AS, Leong WH. Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada. Energy Build. 2013;61:224-32. DOI: 10.1016/j.enbuild.2013.02.036.10.1016/j.enbuild.2013.02.036
  3. [3] Minaei A, Maerefat M. A new analytical model for short-term borehole heat exchanger based on thermal resistance capacity model. Energy Build. 2017;146:233-42. DOI: 10.1016/j.enbuild.2017.04.064.10.1016/j.enbuild.2017.04.064
  4. [4] Rad FM, Fung AS, Rosen MA. An integrated model for designing a solar community heating system with borehole thermal storage. Energy Sustain Dev. 2017;36:6-15. DOI: 10.1016/j.esd.2016.10.003.10.1016/j.esd.2016.10.003
  5. [5] Rad FM, Fung AS. Solar community heating and cooling system with borehole thermal energy storage -review of systems. Renew Sustain Energy Rev. 2016;60:1550-61. DOI: 10.1016/j.rser.2016.03.025.10.1016/j.rser.2016.03.025
  6. [6] Liu Z, Li R, Wang D, Li H, Shi L. Multilayer quasi-three-dimensional model for the heat transfer inside the borehole wall of a vertical ground heat exchanger. Geothermics. 2020;83:101711. DOI: 10.1016/j.geothermics.2019.101711.10.1016/j.geothermics.2019.101711
  7. [7] De Paly M, Hecht-Méndez J, Beck M, Blum P, Zell A, Bayer P. Optimization of energy extraction for closed shallow geothermal systems using linear programming. Geothermics. 2012;43:57-65. DOI: 10.1016/j.geothermics.2012.03.001.10.1016/j.geothermics.2012.03.001
  8. [8] Zhao J, Wang H, Li X, Dai C. Experimental investigation and theoretical model of heat transfer of saturated soil around coaxial ground coupled heat exchanger. Appl Therm Eng. 2008;28:116-25. DOI: 10.1016/j.applthermaleng.2007.03.033.10.1016/j.applthermaleng.2007.03.033
  9. [9] Zoras S, Dimoudi A, Kosmopoulos P. Analysis of conductive temperature variation due to multi-room underground interaction. Energy Build. 2012;55:433-8. DOI: 10.1016/j.enbuild.2012.08.033.10.1016/j.enbuild.2012.08.033
  10. [10] Al-Temeemi A, Harris D. The generation of subsurface temperature profiles for Kuwait. Energy Build. 2001;33:837-41. DOI: 10.1016/S0378-7788(01)00069-X.10.1016/S0378-7788(01)00069-X
  11. [11] Ouzzane M, Eslami-Nejad P, Aidoun Z, Lamarche L. Analysis of the convective heat exchange effect on the undisturbed ground temperature. Solar Energy. 2014;108:340-347. DOI: 10.1016/j.solener.2014.07.015.10.1016/j.solener.2014.07.015
  12. [12] Pan A, Lu L, Tian Y. A new analytical model for short vertical ground heat exchangers with Neumann and Robin boundary conditions on ground surface. Int J Thermal Sci. 2020;152:106326. DOI: 10.1016/j.ijthermalsci.2020.106326.10.1016/j.ijthermalsci.2020.106326
  13. [13] Nian Y, Wang X, Xie K, Cheng W. Estimation of ground thermal properties for coaxial BHE through distributed thermal response test. Renew Energy. 2020;152:1209e1219. DOI: 10.1016/j.renene.2020.02.006.10.1016/j.renene.2020.02.006
  14. [14] Boban L, Soldo V, Fuji H. Investigation of heat pump performance in heterogeneous ground. Energy Convers Manage. 2020;211:112736. DOI: 10.1016/j.enconman.2020.112736.10.1016/j.enconman.2020.112736
  15. [15] Ahmadfard M, Bernier M. A review of vertical ground heat exchanger sizing tools including an intermodel comparison. Renew Sustain Energy Rev. 2019;110:247-65. DOI: 10.1016/j.rser.2019.04.045.10.1016/j.rser.2019.04.045
  16. [16] Sailer E, Taborda DMG, Zdravković L. A new approach to estimating temperature fields around a group of vertical ground heat exchangers in two-dimensional analyses. Renew Energy. 2018; 118:579e590. DOI: 10.1016/j.renene.2017.11.035.10.1016/j.renene.2017.11.035
  17. [17] Hu J. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow. Appl Energy. 2017;202:537-49. DOI: 10.1016/j.apenergy.2017.05.152.10.1016/j.apenergy.2017.05.152
  18. [18] Morchio S, Fossa M. On the ground thermal conductivity estimation with coaxial borehole heat exchangers according to different undisturbed ground temperature profiles. Appl Therm Eng. 2020;173:115198. DOI: 10.1016/j.applthermaleng.2020.115198.10.1016/j.applthermaleng.2020.115198
  19. [19] Beier RA. Thermal response tests on deep borehole heat exchangers with geothermal gradient, Appl Therm Eng. 2020;178:115447. DOI: 10.1016/j.applthermaleng.2020.115447.10.1016/j.applthermaleng.2020.115447
  20. [20] Gónzález-Santander JL. Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition. J Eng Math. 2019;117:47-64. DOI: 10.1007/s10665-019-10007-9.10.1007/s10665-019-10007-9
  21. [21] Kerme ED, Fung AS. Heat transfer simulation, analysis and performance study of single U-tube borehole heat exchanger. Renew Energy. 2020;145:1430-48. DOI: 10.1016/j.renene.2019.06.004.10.1016/j.renene.2019.06.004
  22. [22] Bakirci K. Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region. Energy. 2010;35:3088-96. DOI: 10.1016/j.energy.2010.03.054.10.1016/j.energy.2010.03.054
  23. [23] Florides GA, Pouloupatis P, Kalogirou S, Messaritis V, Panayides I, Zomeni Z, et al. The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus. Energy. 2011; 36:5027-36. DOI: 10.1016/j.energy.2011.05.048.10.1016/j.energy.2011.05.048
  24. [24] Luo J, Rohn J, Bayer M, Priess A, Wilkmann L, Xiang W. Heating and cooling performance analysis of a ground source heat pump system in Southern Germany. Geothermics. 2015;53:57-66. DOI: 10.1016/j.geothermics.2014.04.004.10.1016/j.geothermics.2014.04.004
  25. [25] Sivasakthivel T, Murugesan K, Kumar S, Hu P, Kobiga P. Experimental study of thermal performance of a ground source heat pump system installed in a Himalayan city of India for composite climatic conditions. Energy Build. 2016;131:193-206. DOI: 10.1016/j.enbuild.2016.09.034.10.1016/j.enbuild.2016.09.034
  26. [26] Sivasakthivel T, Philippe M, Murugesan K, Verma V, Hu P. Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications. Renew Energy. 2017; 113:1168-81. DOI: 10.1016/j.renene.2017.06.098.10.1016/j.renene.2017.06.098
  27. [27] Zhai X, Cheng X, Wang R. Heating and cooling performance of a mini type ground source heat pump system. Appl Therm Eng. 2017;111:1366-70. DOI: 10.1016/j.applthermaleng.2016.03.117.10.1016/j.applthermaleng.2016.03.117
  28. [28] Atwany H, Hamdan MO, Abu-Nabah BA, Alami AH, Attom M. Experimental evaluation of ground heat exchanger in UAE. Renew Energy. 2020;159:538e546. DOI: 10.1016/j.renene.2020.06.073.10.1016/j.renene.2020.06.073
  29. [29] Naicker SS, Rees SJ. Long-term high frequency monitoring of a large borehole heat exchanger array. Renew Energy. 2020;145:1528-42. DOI: 10.1016/j.renene.2019.07.008.10.1016/j.renene.2019.07.008
  30. [30] Spitler J, Bernier M. Vertical borehole ground heat exchanger design methods. Ch. 2. In: Rees SJ, editor. Advances in Ground-Source Heat Pump Systems. Oxford: Woodhead Publishing; 2016: 29-61. DOI: 10.1016/B978-0-08-100311-4.00002-9.10.1016/B978-0-08-100311-4.00002-9
  31. [31] Kasuda T, Archenbach P. Earth temperature and thermal diffusivity at selected stations in the United States. Ashrae Trans. 1965;71(1). DOI: 10.6028/nbs.rpt.8972.10.6028/NBS.RPT.8972
  32. [32] Nian Y, Cheng W. Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. Appl Therm Eng. 2018;140:733-44. DOI: 10.1016/j.applthermaleng.2018.05.086.10.1016/j.applthermaleng.2018.05.086
  33. [33] Yu X, Li H, Yao S, Nielsen V, Heller A. Development of an efficient numerical model and analysis of heat transfer performance for borehole heat exchanger. Renew Energy. 2020;152:189-97. DOI: 10.1016/j.renene.2020.01.044.10.1016/j.renene.2020.01.044
  34. [34] Wang C, Li H, Huang Z, Lu Y, Huang X, Gan L. A new heat transfer model for single U-pipe ground heat exchanger. Appl Therm Eng. 2019;154:400-6. DOI: 10.1016/j.applthermaleng.2019.03.115.10.1016/j.applthermaleng.2019.03.115
  35. [35] Mihalakakou G, Santamouris M, Lewis J, Asimakopoulos D, Argiriou A. On the ground temperature below buildings. Solar Energy. 1995;55(5):355-62. DOI: 10.1016/0038-092X(95)00060-5.10.1016/0038-092X(95)00060-5
  36. [36] Ghoreish-Madiseh S, Kuyuk A, de Brito MAR. An analytical model for transient heat transfer in ground-coupled heat exchangers of closed-loop geothermal systems. Appl Therm Eng. 2019;150:696-705. DOI: 10.1016/j.applthermaleng.2019.01.020.10.1016/j.applthermaleng.2019.01.020
  37. [37] Lin J. On the force-restore method for prediction of ground surface temperature. J Geophysic Res. 1980;85:3251-4. DOI: 10.1029/JC085iC06p03251.10.1029/JC085iC06p03251
  38. [38] Olfmana MZ, Woodburya DA, Bartley J. Effects of depth and material property variations on the ground temperature response to heating by a deep vertical ground heat exchanger in purely conductive media. Geotermics. 2014;51:9-30. DOI: 10.1016/j.geothermics.2013.10.002.10.1016/j.geothermics.2013.10.002
  39. [39] Saskia MM, Wallin E. Ground temperature profiles and thermal rock properties at Wairakei, New Zealand. Renew Energy. 2012;43:313-21. DOI: 10.1016/j.renene.2011.11.032.10.1016/j.renene.2011.11.032
  40. [40] Esen H, Inalli M, Esen Y. Temperature distributions in boreholes of a vertical ground-coupled heat pump system. Renew Energy. 2009;34(12):2672-9. DOI: 10.1016/j.renene.2009.04.032.10.1016/j.renene.2009.04.032
  41. [41] Beier RA, Acuña J, Mogensen P, Palm B. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics. 2014;51:470-82. DOI: 10.1016/j.geothermics.2014.02.006.10.1016/j.geothermics.2014.02.006
  42. [42] Rybach L, Eugster WJ. Sustainability aspects of geothermal heat pump operation, with experience from Switzerland. Geothermics. 2010;39:365-9. DOI: 10.1016/j.geothermics.2010.08.002.10.1016/j.geothermics.2010.08.002
  43. [43] Rybach L, Sanner B. Ground-source heat pump systems the European experience. GHC Bull. 2000;21(1):16-26. Available from: http://sanner-online.de/media/art4.pdf.
  44. [44] Ma ZD, Jia GS, Cui X, Xia ZH, Zhang YP, Jin LW. Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer. Appl Energy. 2020;276:115453. DOI: 10.1016/j.apenergy.2020.115453.10.1016/j.apenergy.2020.115453
  45. [45] Michalski A, Klitzsch N. First field application of temperature sensor modules for groundwater flow detection near borehole heat exchanger. Geotherm Energy. 2019;7:37. DOI: 10.1186/s40517-019-0152-5.10.1186/s40517-019-0152-5
  46. [46] Adamovský D, Neuberger P, Adamovský R. Results of operational verification of vertical ground heat exchangers. Energy Build. 2017;152:185-93. DOI: 10.1016/j.enbuild.2017.07.015.10.1016/j.enbuild.2017.07.015
  47. [47] Han C, Bill X. Performance of a residential ground source heat pump system in sedimentary rock formation. Appl Energy. 2016;164:89-98. DOI: 10.1016/j.apenergy.2015.12.003.10.1016/j.apenergy.2015.12.003
  48. [48] Łapa M. Projekt wykonawczy. Przebudowa budynku WBiIŚ Politechniki Białostockiej wraz z budową wewnętrznej instalacji monitoringu w ramach projektu „Poprawa efektywności energetycznej infrastruktury PB z wykorzystaniem odnawialnych źródeł ciepła”. Zakres: budowa instalacji pomp ciepła. [Executive project. Reconstruction of the WBiIŚ building of the Bialystok University of Technology together with the construction of an internal monitoring installation under the project “Improving the energy efficiency of the PB infrastructure using renewable heat sources”, Scope: construction of the heat pump installation]. Developed by design Office Technika Grzewcza SOLARSYSTEM, Myślenice, 2014.
  49. [49] Bigaj Z. Projekt robót geologicznych na wykonanie otworów wiertniczych w celu wykorzystania ciepła z ziemi. [Project of geological works for drilling boreholes to use heat from the earth]. Hydrogeological company PANGEA; Chrzanów: 2013.
  50. [50] Jarmoc W. Projekt techniczny wielopunktowego systemu pomiaru i monitoringu temperatury. [Technical design of the multi-point temperature measurement and monitoring system]. Elektrokomplex company; Białystok: 2014.
  51. [51] Available from: https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetycznabudynkow/dane-do-obliczen-energetycznych-budynkow-1 (Białystok ISO STAT. TXT) (accessed 22.06.2020).
  52. [52] Krogulec E, Wierchowiec J. Mapa geologiczno-gospodarcza w skali 1 : 50 000, arkusz Białystok (339). [Geological and economic map in scale 1:50,000, sheet Bialystok (339)]. Developed by: PIG:2007.
  53. [53] PN-EN 14511-4:2018-08 Air conditioners, liquid chillers and heat pumps for heating and cooling, and industrial process chillers, with electrically driven compressors - Part 4: Requirements. Available from: https://sklep.pkn.pl/pn-en-14511-4-2018-08e.html.
DOI: https://doi.org/10.2478/eces-2020-0031 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 509 - 528
Published on: Jan 29, 2021
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Joanna Piotrowska-Woroniak, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.