Have a personal or library account? Click to login
Numerical Procedures and their Practical Application in PV Module Analyses. Part IV: Atmospheric Transparency Parameters - Application Cover

Numerical Procedures and their Practical Application in PV Module Analyses. Part IV: Atmospheric Transparency Parameters - Application

Open Access
|Apr 2020

References

  1. [1] Rodziewicz T, Teneta J, Zaremba A, Wacławek M. Analysis of solar energy resources in southern Poland for photovoltaic applications. Ecol Chem Eng S. 2013;20:177–98. DOI: 10.2478/eces-2013-0014.10.2478/eces-2013-0014
  2. [2] Chojnacki JA, Teneta J, Więckowski Ł. Development of PV systems and research studies on photovoltaic at the AGH University of Science and Technology in Krakow. Proc. 22nd EC PV Solar Energy Conference. Krakow: 2007;3049–52. https://www.eupvsec-proceedings.com/.
  3. [3] Zdanowicz T, Prorok M, Kolodenny W, Roguszczak H. Outdoor data acquisition system with advanced database for PV modules characterization. 3rd WCPEC. Osaka: 2003. http://www.pvsc-proceedings.org/.
  4. [4] Zdanowicz T, Roguszczak H. Automated outdoor data acquisition system for prolonged testing of PV modules. Proc 13th EC PV Solar Energy Conference. Nice: 1995;2322–5. https://www.eupvsec-proceedings.com/.
  5. [5] Rodziewicz T. Rajfur M. Numerical procedures and their practical application in PV modules analyses. Part I: Air mass. Opto-Electron Rev. 2019;27:39–57. DOI: 10.1016/j.opelre.2019.02.002.10.1016/j.opelre.2019.02.002
  6. [6] Rodziewicz T., Rajfur M. Numerical procedures and their practical application in PV modules’ analyses. Part II: Useful fractions and APE. Opto-Electron Rev. 2019;27:149–60. DOI: 10.1016/j.opelre.2019.05.004.10.1016/j.opelre.2019.05.004
  7. [7] Rodziewicz T, Rajfur M. Numerical procedures and their practical application in PV module analyses. Part III: parameters of atmospheric transparency - determining and correlations. Opto-Electron Rev. 2020;28(1):15–34. DOI: 10.24425/opelre.2020.132499.10.2478/eces-2020-0001
  8. [8] IEC 60891, Procedures for temperature and irradiance corrections to measured I–V characteristics of cFigtalline silicon photovoltaic devices. IEC norm No. 60891 2nd edition. 2009–12. https://www.iec.ch/search/?q=[17]IEC%2060891.
  9. [9] Blaesser G. PV System Measurements and Monitoring: The European Experience. 13–15 Nov. Proc. 9th Intern. PV Sci Eng Conf. Miyazaki (Japan):1996);157–60. http://www.pvsc-proceedings.org.
  10. [10] Blaesser G. PV Array Data Translation Procedure. Proc. 13th EC PVSEC. Nice: 1995;1520–3. https://www.eupvsec-proceedings.com/.
  11. [11] Corrs S, Böhm M. Validation and comparison of curve correction procedures for silicon solar cells. Proc 14th EC PVSEC. Balcerona: 1997;220–3. https://www.eupvsec-proceedings.com/.
  12. [12] Marion B, Rummel S, Anderber A. Current-voltage translation by bilinear interpolation, Prog Photovolt Res Appl. 2004;12:593–607. DOI: 10.1002/pip.551.10.1002/pip.551
  13. [13] Piliougine M, Elizondo D, Mora López L, Sidrach-de-Cardona M. Modelling photovoltaic modules with neural networks using angle of incidence and clearness index. Prog Photovol Res Applicat. 2015;23(4):513–23. DOI: 10.1002/pip.2449.10.1002/pip.2449
  14. [14] Lai ChS, Li X, Lai LL, Mcculloch MD. Daily clearness index profiles and weather conditions studies for photovoltaic systems. Energy Procedia. 2017;142:77–82. DOI: 10.1016/j.egypro.2017.12.013.10.1016/j.egypro.2017.12.013
  15. [15] Coppolino S. A new correlation between clearness index and relative sunshine. Renew Energy. 1994;4(4):417. DOI: 10.1016/0960-1481(94)90049-3.10.1016/0960-1481(94)90049-3
  16. [16] Nemes C, Ciobanu R, Rugina C. Probabilistic analysis of Sky clearness index for solar energy systems planning. Proc. Smart Cities Symposium Prague. 2018;24–5. DOI: 10.1109/SCSP.2018.8402677.10.1109/SCSP.2018.8402677
  17. [17] Petrović I, Vražić M. Approach to advanced clearness index modelling. Int Energy Conf (ENERGYCON). Cavtat, Croatia; 2014. DOI: 10.1109/ENERGYCON.2014.6850538.10.1109/ENERGYCON.2014.6850538
  18. [18] Nunnari G. Forecasting the Class of Daily Clearness Index for PV Applications. 15th Int Conf Informatics in Control, Automat Robotics. 2018;2:172–9. DOI: 10.5220/0006860801820189.10.5220/0006860801820189
  19. [19] Nakada Y, Takahashi H, Ichida K, Minemoto T. Influence of clearness index and air mass on sunlight and outdoor performance of photovoltaic modules. Current Appl Phys. 2010;10(2):261–4. DOI: 10.1016/j.cap.2009.11.026.10.1016/j.cap.2009.11.026
  20. [20] Takei R, Minemoto T, Yoshida S, Takakura H. Output energy estimation of Si-based photovoltaic modules using clearness index and air mass. Japan J Appl Phys. 2012;51:1–10. DOI: 10.1143/JJAP.51.10NF10.10.1143/JJAP.51.10NF10
  21. [21] Vasar C, Prostean G, Szeidert I. An analysis of diffuse solar radiation. 2016 IEEE 20th Jubilee Int Conf Intelligent Eng Systems (INES). Budapest; 2016. DOI: 10.1109/INES.2016.7555112.10.1109/INES.2016.7555112
  22. [22] Ragot Ph, Desmettre D, Paes P, Royer D. Outdoor Testing of Photovoltaic Modules and Arrays, Seventh E.C. Photovoltaic Solar Energy Conf: Sevilla, Spain: 1986;279–86. DOI: 10.1007/978-94-009-3817-5_52.10.1007/978-94-009-3817-5_52
  23. [23] Kinsey GS. PV Module Performance Testing and Standards: From Fundamentals to Applications. In: Photovoltaic Solar Energy. Chichester, West Sussex. United Kingdom: John Wiley Sons; 2017:362–9. DOI: 10.1002/9781118927496.ch33.10.1002/9781118927496.ch33
  24. [24] Halambalakis G. Long-term outdoor testing of polycrystalline silicon and micromorph silicon thin-film tandem technology modules in Greece. Proc. 28th EUPVSEC. Paris: 2013. https://www.eupvsec-proceedings.com/.
  25. [25] Erusiafe N, Chendo M, Obot N. Estimating Diffuse Solar Radiation from Global Solar Radiation. Proc EuroSun 2014. Aix-les-Bains, France; 2014. DOI: 10.18086/eurosun.2014.08.05.10.18086/eurosun.2014.08.05
  26. [26] Iqbal M. Estimation of the average diffuse component of the total solar radiation, Sun: Mankind's Future Source of Energy. Proc Int Solar Energy Society Congress. New Delhi, India; 1978:389–91. DOI: 10.1016/B978-1-4832-8407-1.50077-5.10.1016/B978-1-4832-8407-1.50077-5
  27. [27] Boland JW, Huang J, Ridley B. Decomposing global solar radiation into its direct and diffuse components. Renew Sustainable Energy Rev. 2013;28:749–56. DOI: 10.1016/j.rser.2013.08.023.10.1016/j.rser.2013.08.023
  28. [28] Lam JC, Li DHW. Correlation between global solar radiation and its direct and diffuse components. Build Environ. 1996;31(6):527–35. DOI: 10.1016/0360-1323(96)00026-1.10.1016/0360-1323(96)00026-1
DOI: https://doi.org/10.2478/eces-2020-0001 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 9 - 39
Published on: Apr 24, 2020
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Tadeusz Rodziewicz, Małgorzata Rajfur, Maria Wacławek, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.