Have a personal or library account? Click to login
Free of Volatile Organic Compounds Protection against Moisture in Building Materials/Zabezpieczenia Przegród Budowlanych Przed Wilgocią Wolne Od Lotnych Związków Organicznych Cover

Free of Volatile Organic Compounds Protection against Moisture in Building Materials/Zabezpieczenia Przegród Budowlanych Przed Wilgocią Wolne Od Lotnych Związków Organicznych

Open Access
|Oct 2014

References

  1. [1] Köliö A, Pakkala TA, Lahdensivu J, Kiviste M. Durability demands related to carbonation induced corrosion for finnish concrete buildings in changing climate. Eng Structures. 2014;62-63:42-52. DOI: 10.1016/j.engstruct.2014.01.032.10.1016/j.engstruct.2014.01.032
  2. [2] Rokiel M. Hydroizolacje w budownictwie. Warszawa: Wyd. Medium; 2006.
  3. [3] Nayara SK, Bachmann J, Aguado A, Toralles-Carbonari B. Evaluation of the wettability of mortar component granular materials through contact angle measurements. Cement and Concrete Res. 2012;42:1611-1620. DOI: 10.1016/j.cemconres.2012.09.001.10.1016/j.cemconres.2012.09.001
  4. [4] MacMullen J, Zhang Z, Rirsch E, Dhakal HN, Bennett N. Brick and mortar treatment by cream emulsion for improved water repellence and thermal insulation. Energy and Buildings. 2011;34:1560-1565. DOI: 10.1016/j.enbuild.2011.02.014.10.1016/j.enbuild.2011.02.014
  5. [5] Abuku M, Janssen H, Roels S. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption. Energy and Buildings. 2009;41:101-110. DOI: 10.1016/j.enbuild.2008.07.011.10.1016/j.enbuild.2008.07.011
  6. [6] Płuska I. Konserwacja kamienia w architekturze i rzeźbie. Renowacje i Zabytki. 2005;13(1):119-129.
  7. [7] Frattolillo A, Giovinco G, Mascolo MC, Vitale A. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Experimental Thermal Fluid Sci. 2005;30:27-35.10.1016/j.expthermflusci.2004.12.006
  8. [8] Matziaris K, Stefanidou M, Karagiannis G. Impregnation and superhydrophobicity of coated porous low-fired clay building materials. Progress in Organic Coatings. 2011;72:181-192, DOI: 10.1016/2011.03.012.
  9. [9] Vejmelkova E, Konakova D, Čachova M, Keppert M, Černý R. Effect of hydrophobization on the properties of lime-metakaolin plasters. Construction Building Mater. 2012;37:556-561, DOI: 10.1016/2012.07.097.
  10. [10] Barnat-Hunek D, Klimek B. Hydrofobizacja cegły ręcznie formowanej. Materiały Budowlane. 2012;3:19-20.
  11. [11] Maravelaki-Kalaitzaki P. Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cement Concrete Res. 2007;37:283-290. DOI: 10.1016/j.cemconres.2006.11.007.10.1016/j.cemconres.2006.11.007
  12. [12] Baltazar, L, Santana J, Lopes B, Correia JR, Rodrigues MP. Superficial protection of concrete with epoxy resin impregnations: influence of the substrate roughness and moisture. Materials and Structures/Materiaux et Constructions. 2014:1-16 (in press). DOI 10.1617/s11527-014-0284-9.10.1617/s11527-014-0284-9
  13. [13] Coronado MJA, García Santos A, Padial Molina JF. The influence of water-repellent products in the suction of ceramic brick face side. Boletin de la Sociedad Espanola de Ceramica y Vidrio. 2013;52(4):XV-XVIII. DOI: 10.3989/cyv.2013.v52.i4.1221.10.3989/cyv.2013.v52.i4.1221
  14. [14] Felekoğlu B. A method for improving the early strength of pumice concrete blocks by using alkyl alkoxy silane (AAS). Construction Building Mater. 2012;28:305-310. DOI: 10.1016/2011.07.026.
  15. [15] Polverajan M, Avci S. Zero-VOC, nonionic associative rheology modifiers for the next generation of environmentally friendly coatings. Paint & Coatings Industry. 2012;28(3):20-26.
  16. [16] Chen SP, Liu WT, Ou-Yang CF, Chang JS, Wang JL. Optimizing the emission inventory of volatile organic compounds (VOCs) based on network observations. Atmospheric Environ. 2014;84:1-8. DOI: 10.1016/2013.10.059.
  17. [17] Faber J, Brodzik K, Gołda-Kopek A, Łomankiewicz D. Air pollution in new vehicles as a result of VOC emissions from interior materials. Polish J Environ Stud. 2013;22(6):1701-1709.
  18. [18] Zabiegała B. Organic compounds in indoor environments. Polish J Environ Stud. 2006;383(15):383-393.
  19. [19] Jones AP. Indoor air quality and health. Atmos Environ. 1999;4535(33).10.1016/S1352-2310(99)00272-1
  20. [20] Levin H. Indoor air pollutants. Part 1: General description of pollutants, levels and standards. Ventilation Information Paper 2. 2003.
  21. [21] Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC.
  22. [22] Osterholtz FD, Pohl ER. Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review. J Adhes Sci Technol. 1992;6: 127-149, DOI: 10.1163/156856192X0010610.1163/156856192X00106
  23. [23] Kaesler KH. Siloxanes: permanent protection for concrete. Surf Coat Inter. 2008;91(2):84-86.
  24. [24] Yoshinobu N, Yuji N, Hiroaki H, Syuji F, Mariko S. Surface analysis of silane nanolayer on silica particles using H Pulse NMR. J Adhesion Sci & Technol. 2011;25(19):2703-2716. DOI: 10.1163/016942411X556079.10.1163/016942411X556079
  25. [25] Tittarelli F, Moriconi G. The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concreto. Cement Concrete Res. 2008;38:1354-1357. DOI: 10.1016/j.cemconres.2008.06.009.10.1016/j.cemconres.2008.06.009
  26. [26] Skierucha, W, Wilczek A. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range. Sensors (Basel). 2010;10(4):3314-3329. DOI: 10.3390/s100403314.10.3390/s100403314327418322319300
  27. [27] Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Res. 1980;16:574-582.10.1029/WR016i003p00574
  28. [28] Malicki MA, Plagge R, Roth CH. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European J Soil Sci. 1996;47:357-366.10.1111/j.1365-2389.1996.tb01409.x
  29. [29] Malicki MA, Skierucha W. A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrig Sci. 1989;10(2):153-163. DOI: 10.1007/BF00265691.10.1007/BF00265691
  30. [30] Suchorab Z, Sobczuk H, Rożej A, Łagód G. Comparison of reflectometric and gravimetric methods for examination of sewage sludge additions influence on water properties of reclamated soils. Ecol Chem Eng A. 2009;16(4):257-264.
  31. [31] Skierucha W, Wilczek A. Alokhina O. Calibration of a TDR probe for low soil water content measurements. Sensors and Actuators A. 2008;147:544-552. DOI: 10.1016/j.sna.2008.06.015.10.1016/j.sna.2008.06.015
  32. [32] Skierucha W, Wilczek A, Szypłowska A, Sławiński C, Lamorski K. A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors (Basel). 2012;12(10):13545-66, DOI: 10.3390/s121013545.10.3390/s121013545354558023202009
  33. [33] Udawatta RP, Anderson SH, Motavalli PP, Garrett HE. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agroforest Syst. 2011;82(1):61-75, DOI: 10.1007/s10457-010-9362-3.10.1007/s10457-010-9362-3
  34. [34] Černý R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Measurement. 2009;42:329-336, DOI: 10.1016/2008.08.011.
  35. [35] Suchorab Z, Jarmuła M, Sobczuk H, Pavlík Z, Černý R. Zastosowanie metody TDR do pomiaru podciągania kapilarnego w ściance modelowej z cegły ceramicznej pełnej. Proc ECOpole. 2009;3(1):207-213.
  36. [36] Suchorab Z, Widomski M, Łagód G, Sobczuk H. Capillary rise phenomenon in aerated concrete. Monitoring and simulations. Proc ECOpole 2010;4(2):285-290.
  37. [37] Pavlík Z, Jiřičková M, Černý R, Sobczuk H, Suchorab Z. Determination of moisture diffusivity using the Time Domain Reflectometry (TDR) method. J Building Physics. 2006;30(1):59-70. DOI: 10.1177/1744259106064356.10.1177/1744259106064356
  38. [38] Suchorab Z, Sobczuk H, Černý R, Pavlik Z, Plagge R. Noninvasive moisture measurement of building materials using TDR method. Proc. of the 8th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, June 1-5, Espoo, Finland, 2009, 147-155.
  39. [39] EN 1936:2010. Natural stone test methods - Determination of real density and apparent density, and of total and open porosity.
  40. [40] Suchorab Z. Laboratory measurements of moisture in a model red-brick wall using the surface TDR probe. Proc ECOpole. 2013;7(1):171-176.
  41. [41] Suchorab Z, Jedut A, Sobczuk H. Water content measurement in building barriers and materials using surface TDR probe. Proc ECOpole. 2008;2(1):123-127.
DOI: https://doi.org/10.2478/eces-2014-0029 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 401 - 411
Published on: Oct 10, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Zbigniew Suchorab, Danuta Barnat-Hunek, Piotr Smarzewski, Zbyšek Pavlík, Robert Černý, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.