Have a personal or library account? Click to login

The Use of Water Plants in Biomonitoring And Phytoremediation of Waters Polluted with Heavy Metals

Open Access
|May 2013

References

  1. [1] Szmeja J. Przewodnik do badań roślinności wodnej. Gdańsk: Wyd Uniwersytetu Gdańskiego; 2006.
  2. [2] Gessner F. Hydrobotanik. Berlin: Bd. VEB Deutsche Verlg. Wissenschaften; 1959.
  3. [3] Rabajczyk A, Jóźwiak MA. The possibilities of using macrophytes as bioindicators of heavy metals occurring in sediments. Monit Środow Przyrod. 2008;9:19-26
  4. [4] Wołek J. Występowanie i rozmieszczenie roślin wodnych i szuwarowych na obszarze zespołu zbiorników wodnych Czorsztyn - Niedzica i Sromowe Wyżne przez spiętrzeniem wody. Fragm Flor Geobot., Series Polonica. 1996;3:189-203.
  5. [5] Gabler D, Szoszkiewicz K. Ecological status assessment of rivers using macrophytes on selected examples. Scientific Review. Eng and Environ Sci. 2011;52:75-83.
  6. [6] Stańczykowska A. Ekologia naszych wód. Warszawa: Wyd Szkolne i Pedagogiczne; 1997.
  7. [7] Strzelec M, Spyra A, Serafiński W. Biologia wód śródlądowych: skrypt dla studentów I i II stopnia na kierunkach biologia i ochrona środowiska. Katowice: Wyd. Uniwersytetu Śląskiego; 2010.
  8. [8] Polanowska M. Rośliny wodne. Warszawa: Wyd Szkolne i Pedagogiczne; 1992.
  9. [9] Kłosowski G, Kłosowski S. Rośliny wodne i bagienne. Warszawa: MULTICO; 2001.
  10. [10] Staniszewski R, Szoszkiewicz J. Rośliny stanowisk wilgotnych i wodnych. Poznań: Wyd. Uniwersytetu Przyrodniczego w Poznaniu; 2009.
  11. [11] Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Wyd Nauk PWN; 2001.
  12. [12] Szoszkiewicz K, Jusik S, Zgoła T. Klucz do oznaczania makrofitów dla potrzeb oceny stanu ekologicznego wód powierzchniowych w Polsce. Warszawa: Biblioteka Monitoringu Środowiska; 2008.
  13. [13] Guilizzoni P. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Botany. 1991;41(1-3):87-109. DOI: 10.1016/0304-3770(91)90040-C.10.1016/0304-3770(91)90040-C
  14. [14] Schneider IAH, Rubio J, Smith RW. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Internat J Mineral Process. 2001;62(1-4):111-120. PII: S0301-7516(00)00047-8.10.1016/S0301-7516(00)00047-8
  15. [15] André I, Schneider H, Rubio J. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol. 1999;33:2213-2217.10.1021/es981090z
  16. [16] Wang G, Fuerstenau MC, Smith RW. Sorption of heavy metals onto nonliving water hyacinth roots. Mineral Processing and Extractive Metallurgy Review: An Internat J. 1998;19(1):309-322. DOI: 10.1080/08827509608962448.10.1080/08827509608962448
  17. [17] Schneider IAH, Smith RW, Rubio J. Effect of mining chemicals on biosorption of Cu(II) by the non-living biomass of the macrophyte Potamogeton lucens. Miner Eng. 1999;12(3):255-260. DOI: 10.1016/S0892-6875(99)00003-5.10.1016/S0892-6875(99)00003-5
  18. [18] Lacher C, Smith RW. Sorption of Hg(II) by Potamogeton natans dead biomass. Miner Engineer. 2002;15:187-191. PII: S08 92-6 875(01)00212- 6.10.1016/S0892-6875(01)00212-6
  19. [19] Miretzky P, Saralegui A, Cirelli AF. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere. 2006;62:247-254. DOI: 10.1016/j.chemosphere.2005.05.010.10.1016/j.chemosphere.2005.05.010
  20. [20] Elifantz H, Tel-Or E. Heavy metal biosorption by plant biomass of the macrophyte Ludwigia Stolonifera. Water, Air, and Soil Pollut. 2002;141(1-4):207-218. DOI: 10.1023/A:1021343804220.10.1023/A:1021343804220
  21. [21] Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy. 1997;44(3):301-316. DOI: 10.1016/S0304-386X(96)00059-X.10.1016/S0304-386X(96)00059-X
  22. [22] Chojnacka K. Biosorption and bioaccumulation - the prospect for practical appications. Environ Internation. 2010;36:299-307. DOI:10.1016/j.envint.2009.12.001.10.1016/j.envint.2009.12.00120051290
  23. [23] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF. Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum) Process Biochem. 2003;39:179-183. DOI: 10.1016/S0032-9592(03)00045-1.10.1016/S0032-9592(03)00045-1
  24. [24] Das N, Vimala R, Karthika P. Biosorption of heavy metals - An overview. Indian J Biotechnol. 2008;7:159-169.
  25. [25] Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M. Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Eng Life Sci. 2007;7(2):192-196. DOI: 10.1002/elsc.200620177.10.1002/elsc.200620177
  26. [26] Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol. 2004;92:197-200. DOI: 10.1016/j.biortech.2003.07.011.10.1016/j.biortech.2003.07.011
  27. [27] Ngayila N, Basly J-P, Lejeune A-H, Botineau M, Baudu M. Myriophyllum alterniflorum DC., biomonitor of metal pollution and water quality. Sorption/accumulation capacities and photosynthetic pigments composition changes after copper and cadmium exposure. Sci Total Environ. 2007;373:564-571. DOI: 10.1016/j.scitotenv.2006.11.038.10.1016/j.scitotenv.2006.11.038
  28. [28] Rai UN, Sinha S, Tripathi RD, Chandra P. Wastewater treatability potential of some aquatic macrophytes: Removal of heavy metals. Ecol Eng. 1995;5:5-12. SSDI:0925-8574(95)00011-9.10.1016/0925-8574(95)00011-7
  29. [29] Li G, Xue P, Yan C, Li Q. Copper biosorption by Myriophyllum spicatum: Effects of temperature and pH. Korean J Chem Eng. 2010;27(4):1239-1245. DOI: 10.1007/s11814-010-0183-x.10.1007/s11814-010-0183-x
  30. [30] Yan C, Wang S, Zeng A, Jin X, Xu Q, Zhao J. Equilibrium and kinetics of copper(II) biosorption by Myriophyllum spicatum L. J Environ Sci. 2005;17(6):1025-1029.
  31. [31] Kähkönen MA, Manninen PKG. The uptake of nickel and chromium from water by Elodea canadensis at different nickel and chromium exposure levels. Chemosphere. 1998;36(6):1381-1390.10.1016/S0045-6535(97)10022-4
  32. [32] Sivaci RD, Sivaci A, Sőkmen M. Biosorption of cadmium by Myriophyllum spicatum L. and Myriophyllum triphyllum orchard. Chemosphere. 2004;56:1043-1048. DOI: 10.1016/j.chemosphere.2004.05.032.10.1016/j.chemosphere.2004.05.03215276717
  33. [33] Mechora Š, Cuderman P, Stibilj V, Germ M. Distribution of Se and its species in Myriophyllum spicatum and Ceratophyllum demersum growing in water containing Se(VI). Chemosphere. 2011;84:1636-1641. DOI: 10.1016/j.chemosphere.2011.05.024.10.1016/j.chemosphere.2011.05.02421703659
  34. [34] Khang HV, Hatayama M, Inoue C. Arsenic accumulation by aquatic macrophyte coontail (Ceratophyllum demersum L.) exposed to arsenite, and the effect of iron on the uptake of arsenite and arsenate. Environ and Experim Botany. 2012;83:47-52. DOI: 10.1016/j.envexpbot.2012.04.008.10.1016/j.envexpbot.2012.04.008
  35. [35] Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 2006;65:1027-1039. DOI: 10.1016/j.chemosphere.2006.03.033.10.1016/j.chemosphere.2006.03.03316682069
  36. [36] Peng K, Luo C, Lou L, Li X, Shen Z. Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ. 2008;392(11): 22-29. DOI: 10.1016/j.scitotenv.2007.11.032.10.1016/j.scitotenv.2007.11.03218178241
  37. [37] Begum A, HariKrishna S. Bioaccumulation of trace metals by aquatic plants. Internat J of Chem Tech Research. 2010;2(1):250-254.
  38. [38] Sekomo CB, Rousseau DPL, Saleh SA, Lens PNL. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng. 2012;44:102-110. DOI: 10.1016/j.ecoleng.2012.03.003. 10.1016/j.ecoleng.2012.03.003
  39. [39] Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, et al. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng. 2007;30:320-325. DOI: 10.1016/j.ecoleng.2007.04.007.10.1016/j.ecoleng.2007.04.007
  40. [40] Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environ Contamin and Toxicol. 1996;57(5):779-786.10.1007/s0012899002578791554
  41. [41] Rajfur M, Kłos A, Wacławek M. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water. Bioelectrochemistry. 2010;80:81-86. DOI: 10.1016/j.bioelechem.2010.03.005.10.1016/j.bioelechem.2010.03.00520435526
  42. [42] Rajfur M, Kłos A, Wacławek M. Sorption of copper(II) ions in the biomass of alga Spirogyra sp. Bioelectrochemistry. 2012;87:65-70. DOI: 10.1016/j.bioelechem.2011.12.007.10.1016/j.bioelechem.2011.12.00722245248
  43. [43] Maleva MG, Nekrasova GF, Bezel VS. The response of hydrophytes to environmental pollution with heavy metals. Russ J of Ecol. 2004;35(4):230-235. DOI: 10.1023/B:RUSE.0000033791.94837.
  44. [44] Pajevic S, Vuckovic M, Stankovic Z, Krstic B, Kevresan Z, Radulovic S. The content of some macronutrients and heavy metals in aquatic macrophytes of three ecosystems connected to the Danube in Yugoslavia. Arch Hydrobiol Suppl. 2002;141(1-2):73-83.10.1127/lr/13/2002/73
  45. [45] Stanković Ž, Pajević S, Vučković M, Stojanović S. Concentrations of trace metals in dominant aquatic plants of the Lake Provala (Vojvodina, Yugoslavia). Biologia Plantarum. 2000;43(4):583-585. DOI: 10.1023/A:1002806822988.10.1023/A:1002806822988
  46. [46] Mazej Z, Germ M. Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere. 2009;74:642-647. DOI: 10.1016/j.chemosphere.2008.10.019.10.1016/j.chemosphere.2008.10.01919038415
  47. [47] Kabziński AKM. Metale ciężkie. Cz. II. Emisja i wpływ metali na środowisko. Bioskop. 2007;3:5-10.
  48. [48] González-Acevedo ZI, Olguín MT, Rodríguez-Martínez CE, Frías-Palos H. Sorption and desorption processes of selenium(VI) using non-living biomasses of aquatic weeds in horizontal flow. Water, Air, & Soil Pollut. 2012;223(7):4119-4128. DOI: 10.1007/s11270-012-1178-5.10.1007/s11270-012-1178-5
  49. [49] Fritioff Å, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut. 2005;133:265-274. DOI: 10.1016/j.envpol.2004.05.036.10.1016/j.envpol.2004.05.036
  50. [50] Kabata-Pendias A, Pendias H. Geochemia pierwiastków śladowych. Warszawa: Wyd Nauk PWN; 1999.
  51. [51] Formicki G. Metale ciężkie w środowisku wodnym: właściwości toksyczne, biologiczne, dostępność i kumulacja w tkankach zwierząt. Kraków: Wyd Nauk Uniwersytetu Pedagogicznego w Krakowie; 2010.
  52. [52] Nyquist J, Greger M. Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ and Exper Botany. 2007;60:219-226. DOI: 10.1016/j.envexpbot.2006.10.009.10.1016/j.envexpbot.2006.10.009
  53. [53] Temel M. The effects of various concentrations of lead to chlorophyll a and chlorophyll b of Elodea canadensis Michx. BAÜ Fen Bil Enst Dergisi. 2005;7(2):12-18.
  54. [54] Malec P, Maleva M, Prasad MNV, Strzałka K. Copper toxicity in leaves of Elodea canadensis Michx. Bull Environ Contam Toxicol. 2009;82:627-632. DOI: 10.1007/s00128-009-9650-7.10.1007/s00128-009-9650-7
  55. [55] Kähkönen MA, Kairesalo T. The effects of nickel on the nutrient fluxes and on the growth of Elodea canadensis. Chemosphere. 1998;37(8): 1521-1530. PII: 800456535(98)00147-7.10.1016/S0045-6535(98)00147-7
  56. [56] Vecchia FD, La Rocca N, Moro I, De Faveri S, Rascio CAN. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci. 2005;168:329-338. DOI: 10.1016/j.plantsci.2004.07.025.10.1016/j.plantsci.2004.07.025
  57. [57] Mal TK, Adorjan P, Corbett AL. Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut. 2002;120:307-311. PII: S0269-7491(02)00146-X.10.1016/S0269-7491(02)00146-X
  58. [58] Sergio E, Cobianchi RS, Sorbo S, Conte B, Basile A. Ultrastructural alterations and HSP 70 induction in Elodea canadensis Michx. exposed to heavy metals. Caryologia. 2007;60(1-2):115-120.10.1080/00087114.2007.10589557
  59. [59] Harguinteguy CA, Schreiber R, Pignata ML. Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indicat. 2013;27:8-16. DOI: 10.1016/j.ecolind.2012.11.018.10.1016/j.ecolind.2012.11.018
  60. [60] Kłos A, Rajfur M, Wacławek M, Wacławek W, Wünschmann S, Markert B. Quantitative relations between different concentrations of micro- and macroelements in mosses and lichens: the region of Opole (Poland) as an environmental interface in between Eastern and Western Europe. Int J Environ Health. 2010;4(2/3):98-119. DOI:10.1504/IJENVH.2010.033702.10.1504/IJENVH.2010.033702
  61. [61] Kłos A, Rajfur M, Šrámek I, Wacławek M. Use of lichen and moss in assessment of forest contamination with heavy metals in Praded and Glacensis Euroregions (Poland and Czech Republic). Water Air & Soil Pollut. 2011;222:367-376. DOI:10.1007/s11270-011-0830-9. 10.1007/s11270-011-0830-9
  62. [62] Rajfur M, Kłos A, Waclawek M. Algae utilization in assessment of the large Turawa Lake (Poland) pollution with heavy metals. J Environ Sci and Health Part A. 2010;46: 1401-1408. DOI:10.1080/10934529.2011.606717.10.1080/10934529.2011.606717
  63. [63] Komulainent SF, Morozov AK. Heavy metal dynamics in the periphyton in small rivers of Kola Peninsula. Water Res. 2010;37(6):874-878. DOI: 10.1134/S0097807810060138.10.1134/S0097807810060138
  64. [64] Birungi Z, Masola B, Zaranyika MF, Naigaga I, Marshal B. Active biomonitoring of trace heavy metals fish using (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Phys and Chem of the Earth. 2007;32(15-18):1350-1358. DOI: 10.1016/j.pce.2007.07.034.10.1016/j.pce.2007.07.034
  65. [65] Tudor MI, Tudor M, David C, Teodorof L, Tudor D. Heavy metals concentrations in aquatic environment and living organisms in the Danube delta, Romania. Chemicals as Intent and Accid Global Environ Threats. 2006:435-442.10.1007/978-1-4020-5098-5_40
  66. [66] Fawzy MA, El-sayed Badr N, El-Khatib A, Abo-El-Kassem A. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess. 2012;184:1753-1771. DOI: 10.1007/s10661-011-2076-9.10.1007/s10661-011-2076-9
  67. [67] Zimny H. Ekologiczna ocena stanu środowiska. Bioindykacja i biomonitoring. Warszawa: Agencja Reklamowo-Wydawnicza A. Grzegorczyk; 2006.
  68. [68] Zhou G, Zhang J, Fu J, Shi J, Jiang G. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta. 2008;606(2);135-150. DOI:10.1016/j.aca.2007.11.018.10.1016/j.aca.2007.11.018
  69. [69] Wardencki W. Bioanalityka w ocenie zanieczyszczenia środowiska. Gdańsk: CEEAM; 2004.
  70. [70] Jamnická G, Hrivnák R, Oťaheľová H, Skoršepa M, Valachovič M. Heavy metals content in aquatic plant species from some aquatic biotopes in Slovakia. Proc 36th Internat Conf of IAD. Wien: Austrian Committee Danube Research/IAD. 2006:336-370.
  71. [71] Kähkönen MA, Pantsar-Kallio M, Manninen PKG. Analysing heavy metal concentrations in the different parts of Elodea canadensis and surface sediment with PCA in two boreal lakes in Southern Finland. Chemosphere. 1997;35(11):2645-2656. PII:S0045-6535(97)00337-8.10.1016/S0045-6535(97)00337-8
  72. [72] Munteanu V, Munteanu G. Biomonitoring of mercury pollution: A case study from the Dniester River. Ecolog Indicat. 2007;7:489-496. DOI:10.1016/j.ecolind.2006.01.002.10.1016/j.ecolind.2006.01.002
  73. [73] Thiébaut G, Gross Y, Gierlinski P, Boiché A. Accumulation of metals in Elodea canadensis and Elodea nuttallii: Implications for plant-macroinvertebrate interactions. Sci Total Environ. 2012;408(22):5499-5505. DOI: 10.1016/j.scitotenv.2010.07.026.10.1016/j.scitotenv.2010.07.02620800873
  74. [74] Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Experim Botany. 2006;58:206-215. DOI: 10.1016/j.envexpbot.2005.08.004.10.1016/j.envexpbot.2005.08.004
  75. [75] Samecka-Cymerman A, Kempers AJ. Biomonitoring of water pollution with Elodea canadensis. A case study of three small Polish rivers with different levels of pollution. Water, Air, & Soil Pollut. 2003;145(1-4):139-153.10.1023/A:1023632229312
  76. [76] Samecka-Cymerman A, Kempers AJ. Bioaccumulation of heavy metals by aquatic macrophytes around Wrocław, Poland. Ecotoxicol and Environ Safety. 1996; 35(3):242-247.10.1006/eesa.1996.01069007000
  77. [77] Samecka-Cymerman A, Kempers AJ. Heavy metals in aquatic macrophytes from two small rivers polluted by urban, agricultural and textile industry sewages SW Poland. Arch Environ Contam Toxicol. 2007;53:198-206. DOI: 10.1007/s00244-006-0059-6.10.1007/s00244-006-0059-617549539
  78. [78] Žáková Z, Kočková E. Biomonitoring and assessment of heavy metal contamination of streams and reservoirs in the Dyje/Thaya river basin, Czech Republic. Water Sci Technol. 1999;39(12):225-232.10.2166/wst.1999.0550
  79. [79] Pajeviã SP, Vuåkoviã MS, Kevrešan ŽS, Matavulj MN, Radulović SW, Radnović DV. Aquatic macrophytes as indicators of heavy metal pollution of water in DTD canal system. Proc for Natural Sci. 2003;104:51-60. UDC: 581.526.3:581.192]:556.53(497.113).10.2298/ZMSPN0304051P
  80. [80] Pajević S, Borišev M, Rončević S, Vukov D, Igić R. Heavy metal accumulation of Danube river aquatic plants - indication of chemical contamination. Cent Eur J Biol. 2008;3(3):285-294. DOI: 10.2478/s11535-008-0017-6.10.2478/s11535-008-0017-6
  81. [81] Muntyanu GG, Muntyanu VI. Biomonitoring of some heavy metals in the Dubossary (Dubasari) Reservoir. Hydrobiol J. 2006;42(2):87-101.10.1615/HydrobJ.v42.i2.80
  82. [82] Sawidis T, Chettri MK, Zachariadis GA, Stratis JA. Heavy metals in aquatic plants and sediments from water systems in Macedonia, Greece. Ecotoxicol Environ Saf. 1995;32(1):73-80.10.1006/eesa.1995.10878565880
  83. [83] Demirezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004;56:685-696. DOI: 10.1016/j.chemosphere.2004.04.011. 10.1016/j.chemosphere.2004.04.01115234165
  84. [84] Tsao DT. Overview of phytotechnologies. Naperville Group Environ Manage J. 2003;78:7-14. DOI: 10.1007/3-540-45991-X_1.10.1007/3-540-45991-X_1
  85. [85] Buczkowski R, Kondzielski I, Szymański T. Metody remediacji gleb zanieczyszczonych metalami ciężkimi. Toruń: Wyd Uniwersytetu Mikołaja Kopernika; 2002.
  86. [86] Marecik R, Króliczak P, Cyplik P. Fitoremediacja - alternatywa dla tradycyjnych metod oczyszczania środowiska. Biotechnologia. 2006;74:88-97.
  87. [87] Rahman MA, Hasegawa H. Aquatic arsenic: Phytoremediation using floating macrophytes. Chemosphere. 2011;83(5): 633-646. DOI: 10.1016/j.chemosphere.2011.02.045.10.1016/j.chemosphere.2011.02.045
  88. [88] Pilon-Smits E. Phytoremedation. Ann Rev Plant Biol. 2005;56:15-39.10.1146/annurev.arplant.56.032604.144214
  89. [89] Parveen S, Arjun B. Bioaccumulation of chromium by aquatic macrophytes Hydrilla sp. & Chara sp. Pelagia Research Library. 2011;2(1):214-220.
  90. [90] Chandra P, Kulshreshtha K. Chromium accumulation and toxicity in aquatic vascular plants. Botan Rev. 2004;70(3):313-327. DOI: 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2.
  91. [91] Basile A, Sorbo S, Conte B, Cobianchi RC, Trinchella F, Capasso C, Carginale V. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes. Internat J Phytoremediat. 2012;14(4):374-387. DOI: 10.1080/15226514.2011.620653.10.1080/15226514.2011.620653
  92. [92] Axtell NR, Sternberg APK, Claussen K. Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol. 2003;89(1):41-48. DOI: 10.1016/S0960-8524(03)00034-8.10.1016/S0960-8524(03)00034-8
  93. [93] Hou W, Chen X, Song G, Wang Q, Chang CC. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol and Biochem. 2007;45(1):62-69. DOI: 10.1016/j.plaphy.2006.12.005.10.1016/j.plaphy.2006.12.00517300947
  94. [94] Mishra VK, Upadhyay AR, Pathak V, Tripathi BD. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water, Air, and Soil Pollut. 2008;192(1-4):303-314. DOI: 10.1007/s11270-008-9657-4.10.1007/s11270-008-9657-4
  95. [95] Dogan M, Saygideger SD, Colak U. Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull of Environ Contamin and Toxicol. 2009;83(2):249-254. DOI: 10.1007/s00128-009-9733-5.10.1007/s00128-009-9733-519434355
  96. [96] Mkandawire M, Taubert B, Dudel EG. Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Internat J of Phytoremediat. 2004;6(4):347-362. DOI: 10.1080/16226510490888884.10.1080/1622651049088888415696706
  97. [97] Mkandawire M, Dudel EG. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci of The Total Environ. 2005;336(1-3):81-89. DOI: 10.1016/j.scitotenv.2004.06.002.10.1016/j.scitotenv.2004.06.00215589251
  98. [98] Alvarado S, Guédez M, Lué-Merú AP, Nelson G, Alvaro A, Jesús AC, Gyula Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol. 2008;99(17):8436-8440. DOI: 10.1016/j.biortech.2008.02.051.10.1016/j.biortech.2008.02.05118442903
  99. [99] Fritioff Å, Greger M. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere. 2006;63(2):220-227. DOI: 10.1016/j.chemosphere.2005.08.018.10.1016/j.chemosphere.2005.08.01816213560
  100. [100] Demırezen D, Aksoy A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere. 2004; 56(7):685-696. DOI: 10.1016/j.chemosphere.2004.04.011.10.1016/j.chemosphere.2004.04.01115234165
  101. [101] Olguín EJ, Sánchez-Galván G. Heavy metal removal in phytofiltration and phytoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012;30(1):3-8. DOI:10.1016/j.nbt.2012.05.020.10.1016/j.nbt.2012.05.02022673055
  102. [102] Lezcano JM, González F, Ballester A, Blázquez ML, Muñoz JA, García-Balboa C. Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems. J Environ Manage. 2011;92: 2666-2674. DOI: 10.1016/j.jenvman.2011.06.004. 10.1016/j.jenvman.2011.06.00421723659
DOI: https://doi.org/10.2478/eces-2013-0026 | Journal eISSN: 2084-4549 | Journal ISSN: 1898-6196
Language: English
Page range: 353 - 370
Published on: May 29, 2013
Published by: Society of Ecological Chemistry and Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 Paweł Krems, Małgorzata Rajfur, Maria Wacławek, Andrzej Kłos, published by Society of Ecological Chemistry and Engineering
This work is licensed under the Creative Commons License.