Have a personal or library account? Click to login
A Survey of Broken Rotor Bar Fault Diagnostic Methods of Induction Motor Cover

A Survey of Broken Rotor Bar Fault Diagnostic Methods of Induction Motor

Open Access
|Mar 2019

References

  1. [1] R. H. C. Palacios, I. N. da Silva, A. Goedtel, W. F. Godoy, and T. D. Lopes, “Diagnosis of Stator Faults Severity in Induction Motors Using Two Intelligent Approaches,” IEEE Trans. Ind. Informatics, vol. 13, no. 4, pp. 1681–1691, Aug. 2017. https://doi.org/10.1109/TII.2017.2696978">https://doi.org/10.1109/TII.2017.269697810.1109/TII.2017.2696978
  2. [2] B. Ayhan, H. J. Trussell, M.-Y. Chow, and M.-H. Song, “On the Use of a Lower Sampling Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1421–1434, Mar. 2008. https://doi.org/10.1109/TIE.2007.896522">https://doi.org/10.1109/TIE.2007.89652210.1109/TIE.2007.896522
  3. [3] Z. Hou, J. Huang, H. Liu, M. Ye, Z. Liu, and J. Yang, “Diagnosis of Broken Rotor Bar Fault in Open- and Closed-Loop Controlled Wye-Connected Induction Motors Using Zero-Sequence Voltage,” IET Electr. Power Appl., vol. 11, no. 7, pp. 1214–1223, Aug. 2017. https://doi.org/10.1049/iet-epa.2016.0505">https://doi.org/10.1049/iet-epa.2016.050510.1049/iet-epa.2016.0505
  4. [4] Y. Gritli, A. O. Di Tommaso, R. Miceli, C. Rossi, and F. Filippetti, “Diagnosis of Mechanical Unbalance for Double Cage Induction Motor Load in Time-Varying Conditions Based on Motor Vibration Signature Analysis,” in 2013 International Conference on Renewable Energy Research and Applications (ICRERA), 2013, pp. 1157–1162. https://doi.org/10.1109/ICRERA.2013.6749927">https://doi.org/10.1109/ICRERA.2013.674992710.1109/ICRERA.2013.6749927
  5. [5] P. Granjon, “Electromagnetic Vibrations Estimation of an Induction Motor by Nonlinear Optimal Filtering,” in 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, pp. 1–5. https://doi.org/10.1109/DEMPED.2005.4662508">https://doi.org/10.1109/DEMPED.2005.466250810.1109/DEMPED.2005.4662508
  6. [6] L. Weili, X. Ying, S. Jiafeng, and L. Yingli, “Finite-Element Analysis of Field Distribution and Characteristic Performance of Squirrel-Cage Induction Motor With Broken Bars,” IEEE Trans. Magn., vol. 43, no. 4, pp. 1537–1540, Apr. 2007. https://doi.org/10.1109/TMAG.2006.892086">https://doi.org/10.1109/TMAG.2006.89208610.1109/TMAG.2006.892086
  7. [7] R. Fiser and S. Ferkolj, “Application of a Finite Element Method to Predict Damaged Induction Motor Performance,” IEEE Trans. Magn., vol. 37, no. 5, pp. 3635–3639, 2001. https://doi.org/10.1109/20.952679">https://doi.org/10.1109/20.95267910.1109/20.952679
  8. [8] D. Lopez-Perez and J. Antonino-Daviu, “Application of Infrared Thermography to Failure Detection in Industrial Induction Motors: Case Stories,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1901–1908, May 2017. https://doi.org/10.1109/TIA.2017.2655008">https://doi.org/10.1109/TIA.2017.265500810.1109/TIA.2017.2655008
  9. [9] J. Antonino-Daviu, A. Quijano-Lopez, V. Climente-Alarcon, and C. Garin-Abellan, “Reliable Detection of Rotor Winding Asymmetries in Wound Rotor Induction Motors via Integral Current Analysis, ” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2040–2048, May 2017. https://doi.org/10.1109/TIA.2017.2672524">https://doi.org/10.1109/TIA.2017.267252410.1109/TIA.2017.2672524
  10. [10] Y. Park, M. Jeong, S. Bin Lee, J. A. Antonino-Daviu, and M. Teska, “Influence of Blade Pass Frequency Vibrations on MCSA-Based Rotor Fault Detection of Induction Motors,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2049–2058, May 2017. https://doi.org/10.1109/TIA.2017.2672526">https://doi.org/10.1109/TIA.2017.267252610.1109/TIA.2017.2672526
  11. [11] M. Drif, H. Kim, J. Kim, S. Bin Lee, and A. J. M. Cardoso, “Active and Reactive Power Spectra-Based Detection and Separation of Rotor Faults and Low-Frequency Load Torque Oscillations,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2702–2710, May 2017. https://doi.org/10.1109/TIA.2016.2613508">https://doi.org/10.1109/TIA.2016.261350810.1109/TIA.2016.2613508
  12. [12] H. W. Penrose, “Test Methods for Determining the Impact of Motor Condition on Motor Efficiency and Reliability,” Ph. D. Diss., vol. ALL-TEST P, no. LLC, Old Saybrook, CT, pp. 1–8.
  13. [13] S. Karmakar, S. Chattopadhyay, M. Mitra, and S. Sengupta, Induction Motor Fault Diagnosis: Approach Through Current Signature Analysis, 1st ed.10.1007/978-981-10-0624-1_1
  14. [14] M. Hedayati and N. Mariun, “Assessment of Different Voltage Sags on Performance of Induction Motors Operated With Shunt FACTS,” in 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), 2012, pp. 483–489.10.1109/PEDSTC.2012.6183378
  15. [15] T. Vaimann, A. Belahcen, and A. Kallaste, “Necessity for Implementation of Inverse Problem Theory in Electric Machine Fault Diagnosis,” in 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 380–385. https://doi.org/10.1109/DEMPED.2015.7303718">https://doi.org/10.1109/DEMPED.2015.730371810.1109/DEMPED.2015.7303718
  16. [16] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA Method via Hilbert Transform, Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 52–59, Mar. 2009. https://doi.org/10.1109/TEC.2008.2003207">https://doi.org/10.1109/TEC.2008.200320710.1109/TEC.2008.2003207
  17. [17] M. Malekpour, B. T. Phung, and E. Ambikairajah, “Stator Current Envelope Extraction for Analysis of Broken Rotor Bar in Induction Motors,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 240–246. https://doi.org/10.1109/DEMPED.2017.8062362">https://doi.org/10.1109/DEMPED.2017.806236210.1109/DEMPED.2017.8062362
  18. [18] G. Didier, H. Razik, O. Caspary, and E. Ternisien, “Rotor Cage Fault Detection in Induction Motor Using Global Modulation Index on the Instantaneous Power Spectrum,” in 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2003, pp. 104–109. https://doi.org/10.1109/DEMPED.2003.1234555">https://doi.org/10.1109/DEMPED.2003.123455510.1109/DEMPED.2003.1234555
  19. [19] D. Matić, F. Kulić, M. Pineda-Sánchez, and I. Kamenko, “Support Vector Machine Classifier for Diagnosis in Electrical Machines: Application to Broken Bar,” Expert Syst. Appl., vol. 39, no. 10, pp. 8681–8689, Aug. 2012. https://doi.org/10.1016/j.eswa.2012.01.214">https://doi.org/10.1016/j.eswa.2012.01.21410.1016/j.eswa.2012.01.214
  20. [20] A. Bellini, “Quad Demodulation: A Time-Domain Diagnostic Method for Induction Machines,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 712–719, 2009. https://doi.org/10.1109/TIA.2009.2013593">https://doi.org/10.1109/TIA.2009.201359310.1109/TIA.2009.2013593
  21. [21] S. Das, P. Purkait, C. Koley, and S. Chakravorti, “Performance of a Load-Immune Classifier for Robust Identification of Minor Faults in Induction Motor Stator Winding,” IEEE Trans. Dielectr. Electr. Insul., vol. 21, no. 1, pp. 33–44, Feb. 2014. https://doi.org/10.1109/TDEI.2013.003549">https://doi.org/10.1109/TDEI.2013.00354910.1109/TDEI.2013.003549
  22. [22] B. Mirafzal and N. A. O. Demerdash, “Induction Machine Broken-Bar Fault Diagnosis Using the Rotor Magnetic Field Space-Vector Orientation,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 534–542, Mar. 2004. https://doi.org/10.1109/TIA.2004.824433">https://doi.org/10.1109/TIA.2004.82443310.1109/TIA.2004.824433
  23. [23] B. Mirafzal and N. A. O. Demerdash, “Effects of Load Magnitude on Diagnosing Broken Bar Faults in Induction Motors Using the Pendulous Oscillation of the Rotor Magnetic Field Orientation,” IEEE Trans. Ind. Appl., vol. 41, no. 3, pp. 771–783, 2005. https://doi.org/10.1109/TIA.2005.847315">https://doi.org/10.1109/TIA.2005.84731510.1109/TIA.2005.847315
  24. [24] A. Sapena-Baño, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and Ž. Kanović, “Low-Cost Diagnosis of Rotor Asymmetries in Induction Machines Working at a Very Low Slip Using the Reduced Envelope of the Stator Current,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1409–1419, 2015. https://doi.org/10.1109/TEC.2015.2445216">https://doi.org/10.1109/TEC.2015.244521610.1109/TEC.2015.2445216
  25. [25] A. Sapena-Bano et al., “Harmonic Order Tracking Analysis: A Novel Method for Fault Diagnosis in Induction Machines,” IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 833–841, Sep. 2015. https://doi.org/10.1109/TEC.2015.2416973">https://doi.org/10.1109/TEC.2015.241697310.1109/TEC.2015.2416973
  26. [26] A. Sapena-Bano, J. Burriel-Valencia, M. Pineda-Sanchez, R. Puche-Panadero, and M. Riera-Guasp, “The Harmonic Order Tracking Analysis Method for the Fault Diagnosis in Induction Motors Under Time-Varying Conditions,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 244–256, Mar. 2017. https://doi.org/10.1109/TEC.2016.2626008">https://doi.org/10.1109/TEC.2016.262600810.1109/TEC.2016.2626008
  27. [27] B. K. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2002.
  28. [28] E. P. Cornell and T. A. Lipo, “Modeling and Design of Controlled Current Induction Motor Drive Systems,” IEEE Trans. Ind. Appl., vol. IA-13, no. 4, pp. 321–330, Jul. 1977. https://doi.org/10.1109/TIA.1977.4503414">https://doi.org/10.1109/TIA.1977.450341410.1109/TIA.1977.4503414
  29. [29] S. A. Odhano, R. Bojoi, A. Boglietti, S. G. Rosu, and G. Griva, “Maximum Efficiency per Torque Direct Flux Vector Control of Induction Motor Drives,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4415–4424, Nov. 2015. https://doi.org/10.1109/TIA.2015.2448682">https://doi.org/10.1109/TIA.2015.244868210.1109/TIA.2015.2448682
  30. [30] A. J. Marques Cardoso and E. S. Saraiva, “On-Line Diagnostics of Three-Phase Induction Motors by Park’s Vector.pdf,” in ICEM, 1988, pp. 231–234.
  31. [31] A. J. Marques Cardoso and E. S. Saraiva, “On-Line Diagnostics of Current Source Inverter Fed Induction Machines by Park’s Vector Approach,” in ICEM, 1990, pp. 1000–1005.
  32. [32] J. Perez-Cruz, R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Martinez-Roman, and A. Sapena-Bano, “Cost-Effective On-Line Fault Diagnosis of Induction Motors Using the Reduced Modulus of the Current Park’s Vector,” in 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2017, pp. 427–433. https://doi.org/10.1109/DEMPED.2017.8062390">https://doi.org/10.1109/DEMPED.2017.806239010.1109/DEMPED.2017.8062390
  33. [33] S. M. A. Cruz, A. J. Marques Cardoso, “Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by Extended Park’s Vector Approach,” Electr. Mach. Power Syst., vol. 28, no. 4, pp. 289–299, Apr. 2000. https://doi.org/10.1080/073135600268261">https://doi.org/10.1080/07313560026826110.1080/073135600268261
  34. [34] S. M. A. Cruz and A. J. M. Cardoso, “Stator Winding Fault Diagnosis in Three-Phase Synchronous and Asynchronous Motors, by the Extended Park’s Vector Approach,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1227–1233, 2001. https://doi.org/10.1109/28.952496">https://doi.org/10.1109/28.95249610.1109/28.952496
  35. [35] F. Haghjoo and M. Mostafaei, “Flux-Based Turn-to-Turn Fault Protection for Power Transformers, ” IET Gener. Transm. Distrib., vol. 10, no. 5, pp. 1154–1163, Apr. 2016. https://doi.org/10.1049/iet-gtd.2015.0738">https://doi.org/10.1049/iet-gtd.2015.073810.1049/iet-gtd.2015.0738
  36. [36] I. Bandyopadhyay, S. Das, P. Purkait, P. P. Das, and C. Koley, “Application of Wavelet Transform to Identify Faulty IGBTs in 3-Phase Induction Motor Drives,” in proc. 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), 2014, pp. 296–300. https://doi.org/10.1109/CIEC.2014.6959097">https://doi.org/10.1109/CIEC.2014.695909710.1109/CIEC.2014.6959097
  37. [37] N. M. A. Freire, J. O. Estima, and A. J. Marques Cardoso, “Open-Circuit Fault Diagnosis in PMSG Drives for Wind Turbine Applications,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3957–3967, Sep. 2013. https://doi.org/10.1109/TIE.2012.2207655">https://doi.org/10.1109/TIE.2012.220765510.1109/TIE.2012.2207655
  38. [38] S. M. A. Cruz, A. M. S. Mendes, and M. B. Abadi, “Fault Diagnostic Algorithm for Three-Level Neutral Point Clamped AC Motor Drives, Based on the Average Current Park’s Vector,” IET Power Electron., vol. 7, no. 5, pp. 1127–1137, May 2014. https://doi.org/10.1049/ietpel.2013.0416">https://doi.org/10.1049/ietpel.2013.041610.1049/ietpel.2013.0416
  39. [39] G. R. Bossio, C. H. De Angelo, J. M. Bossio, C. M. Pezzani, and G. O. Garcia, “Separating Broken Rotor Bars and Load Oscillations on IM Fault Diagnosis Through the Instantaneous Active and Reactive Currents,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4571–4580, Nov. 2009. https://doi.org/10.1109/TIE.2009.2024656">https://doi.org/10.1109/TIE.2009.202465610.1109/TIE.2009.2024656
  40. [40] A. Soualhi, G. Clerc, and H. Razik, “Detection and Diagnosis of Faults in Induction Motor Using an Improved Artificial Ant Clustering Technique,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4053–4062, Sep. 2013. https://doi.org/10.1109/TIE.2012.2230598">https://doi.org/10.1109/TIE.2012.223059810.1109/TIE.2012.2230598
  41. [41] R. J. Romero-Troncoso et al., “FPGA-Based Online Detection of Multiple Combined Faults in Induction Motors Through Information Entropy and Fuzzy Inference,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5263–5270, 2011. https://doi.org/10.1109/TIE.2011.2123858">https://doi.org/10.1109/TIE.2011.212385810.1109/TIE.2011.2123858
  42. [42] R. A. Lizarraga-Morales, C. Rodriguez-Donate, E. Cabal-Yepez, M. Lopez-Ramirez, L. M. Ledesma-Carrillo, and E. R. Ferrucho-Alvarez, “Novel FPGA-Based Methodology for Early Broken Rotor Bar Detection and Classification Through Homogeneity Estimation,” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1760–1769, 2017. https://doi.org/10.1109/TIM.2017.2664520">https://doi.org/10.1109/TIM.2017.266452010.1109/TIM.2017.2664520
  43. [43] A. Khezzar, M. Y. Kaikaa, M. El Kamel Oumaamar, M. Boucherma, and H. Razik, “On the Use of Slot Harmonics as a Potential Indicator of Rotor Bar Breakage in the Induction Machine,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4592–4605, Nov. 2009. https://doi.org/10.1109/TIE.2009.2030819">https://doi.org/10.1109/TIE.2009.203081910.1109/TIE.2009.2030819
  44. [44] S. Bachir, S. Tnani, J.-C. Trigeassou, and G. Champenois, “Diagnosis by Parameter Estimation of Stator and Rotor Faults Occurring in Induction Machines,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 963–973, Jun. 2006. https://doi.org/10.1109/TIE.2006.874258">https://doi.org/10.1109/TIE.2006.87425810.1109/TIE.2006.874258
  45. [45] K. Yong-Hwa, Y. Young-Woo, H. Don-Ha, S. Jong-Ho, and K. Dong-Sik, “High-Resolution Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors,” Ind. Electron. IEEE Trans., vol. 60, no. 9, pp. 4103–4117, 2013. https://doi.org/10.1109/TIE.2012.2227912">https://doi.org/10.1109/TIE.2012.222791210.1109/TIE.2012.2227912
  46. [46] J. Cusido Cusido, L. Romeral, J. a. Ortega, J. a. Rosero, and A. Garcia Espinosa, “Fault Detection in Induction Machines Using Power Spectral Density in Wavelet Decomposition,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 633–643, 2008. https://doi.org/10.1109/TIE.2007.911960">https://doi.org/10.1109/TIE.2007.91196010.1109/TIE.2007.911960
  47. [47] D. Z. Li, W. Wang, and F. Ismail, “A Spectrum Synch Technique for Induction Motor Health Condition Monitoring,” IEEE Trans. Energy Convers., vol. 30, no. 4, pp. 1348–1355, Dec. 2015. https://doi.org/10.1109/TEC.2015.2454440">https://doi.org/10.1109/TEC.2015.245444010.1109/TEC.2015.2454440
  48. [48] A. Sapena-Bano, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and D. Matic, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. Instrum. Meas., vol. 64, no. 11, pp. 3137–3146, Nov. 2015. https://doi.org/10.1109/TIM.2015.2444240">https://doi.org/10.1109/TIM.2015.244424010.1109/TIM.2015.2444240
  49. [49] A. Sapena-Bano, M. Riera-Guasp, R. Puche-Panadero, J. Martinez-Roman, J. Perez-Cruz, and M. Pineda-Sanchez, “Harmonic Order Tracking Analysis: A Speed-Sensorless Method for Condition Monitoring of Wound Rotor Induction Generators,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4719–4729, Nov. 2016. https://doi.org/10.1109/TIA.2016.2597134">https://doi.org/10.1109/TIA.2016.259713410.1109/TIA.2016.2597134
  50. [50] T. G. Vilhekar, M. S. Ballal, and H. M. Suryawanshi, “Application of Double Park’s Vector Approach for Detection of Inter-Turn Fault in Induction Motor,” in 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 2015, pp. 173–178. https://doi.org/10.1109/CATCON.2015.7449529">https://doi.org/10.1109/CATCON.2015.744952910.1109/CATCON.2015.7449529
  51. [51] J. Burriel-Valencia, A. Sapena-Bano, M. Pineda-Sanchez, and J. Martinez-Roman, “Multilayer Park’s Vector Approach, a Method for Fault Detection on Induction Motors,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 775–780. https://doi.org/10.1109/ICIT.2015.7125192">https://doi.org/10.1109/ICIT.2015.712519210.1109/ICIT.2015.7125192
  52. [52] B. Asad, T. Vaimann, A. Belahcen, and A. Kallaste, “Broken Rotor Bar Fault Diagnostic of Inverter Fed Induction Motor Using FFT, Hilbert and Park’s Vector Approach,” in 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 2352–2358. https://doi.org/10.1109/ICELMACH.2018.8506957">https://doi.org/10.1109/ICELMACH.2018.850695710.1109/ICELMACH.2018.8506957
Language: English
Page range: 117 - 124
Published on: Mar 12, 2019
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 Bilal Asad, Toomas Vaimann, Anton Rassõlkin, Ants Kallaste, Anouar Belahcen, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.