References
- Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-795.
- Hamburg MA, Collins FS. The path to personalized medicine. N Engl J Med. 2010;363(4):301-304.
- Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.
- Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1177932219899051.
- Trifonov D, Zhelev N. Drug discovery and development. In: Dundar M, ed. Current applications of biotechnology. Erciyes University; 2015: 273.
- Lu J, Choi K, Eremeev M, Gobburu J, Goswami S, Liu Q, Mo G, Musante CJ, Shahin MH. Large language models and their applications in drug discovery and development: A primer. Clin Transl Sci. 2025;18(4):e70205.
- Zhang K, Zhou R, Adhikarla E, et al. A generalist vision– language foundation model for diverse biomedical tasks. Nat Med. 2024;30:3129-3141.
- Krassowski M, Das V, Sahu SK, Misra BB. State of the field in multi-omics research: from computational needs to data mining and sharing. Front Genet. 2020;11:610798.
- Buniello A, Suveges D, Cruz-Castillo C, et al. Open Targets Platform: facilitating therapeutic hypotheses building in drug discovery. Nucleic Acids Res. 2025;53(D1):D1467-D1475.
- Chen S, Wang F, Zhou Y, et al. Genomics of drug target prioritization for complex diseases. Nat Rev Genet. 2025;27(2):89-108.
- Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018.
- Mugahid D, Sanz-Fernández M, Rodríguez-Perales S, Megías D. A practical guide to FAIR data management in the age of multi-OMICS and AI. Front Immunol. 2025;15:1439434.
- Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84.
- Rappoport N, Shamir R. Multi-omic and multi-view clustering algorithms: review and cancer benchmark. Nucleic Acids Res. 2018;46(20):10546-10562.
- Jiang W, Chen Y, Liu X, et al. Network-based multi-omics integrative analysis methods in drug discovery: a systematic review. BioData Mining. 2025;18(1):27.
- Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. A network-based cancer drug discovery: from integrated multi-omics approaches to precision medicine. Curr Pharm Des. 2018;24(32):3778-3790.
- Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-pheno-type interactions. Nat Rev Genet. 2015;16(2):85-97.
- Du P, Fan R, Zhang N, Wu C, Zhang Y. Advances in integrated multi-omics analysis for drug-target identification. Biomolecules. 2024;14(6):692.
- Garg M, Karpinski M, Matelska D, et al. Disease prediction with multi-omics and biomarkers empowers case– control genetic discoveries in the UK Biobank. Nat Genet. 2024;56:1821-1831.
- Argelaguet R, Velten B, Arnol D, et al. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018;14(6):e8124.
- Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J. 2021;19:3735-3746.
- Zack M, Singh S, Stocco G, Theken KN. Artificial intelligence and multi-omics in pharmacogenomics: a new era of precision medicine. Mayo Clin Proc Digit Health. 2025;3(2):100246.
- Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of DNA methylation data. Nat Rev Genet. 2018;19(3):129-147.
- Scheffler M, Krug M, Xu M, et al. FAIR data enabling new horizons for materials research. Nature. 2022;604(7907):635-642.
- Tong L, Chen R, Wang S, et al. Integrating multi-omics data with EHR for precision medicine using advanced artificial intelligence. IEEE Rev Biomed Eng. 2024;17:80-97.
- McNair D. Artificial intelligence and machine learning for lead-to-candidate decision-making and beyond. Annu Rev Pharmacol Toxicol. 2023;63:77-97.
- Okamoto J, Suzuki Y, Watanabe Y, et al. Multi-INTACT: integrative analysis of the genome, transcriptome, and proteome identifies causal mechanisms of complex traits. Genome Biol. 2025;26:19.
- Kim MS, Chen X, Lee SH, et al. Prioritization of therapeutic targets for dyslipidemia using integrative multi-omics and multi-trait analysis. Cell Rep Med. 2023;4:101112.
- Hu T, Qiu C, Luo Y, et al. Omnibus proteome-wide association study identifies 43 risk genes for Alzheimer disease dementia. Am J Hum Genet. 2024;111(9):1848-1863.
- Lin Z, Pan W. A robust cis-Mendelian randomization method with application to drug target discovery. Nat Commun. 2024;15:6072.
- Jørgensen JT, Winther H, Askaa J, Andresen L, Olsen D, Mollerup J. A companion diagnostic with significant clinical impact in treatment of breast and gastric cancer. Front Oncol. 2021;11:676939.
- Khalil HS, Mitev V, Vlaykoya T, Cavicchi L, Zhelev N. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J Biotechnol. 2015;202:40-49.
- Schipper M, Huang Z, Qi Y, et al. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat Genet. 2025;57:323-333.
- Yao V, Kaletsky R, Keyes W, et al. An integrative tissue-network approach to identify and test human disease genes. Nat Biotechnol. 2018;36(11):1091-1099.
- Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front Oncol. 2020;10:1030.
- Cantini L, Zakeri P, Hernandez C, et al. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat Commun. 2021;12(1):124.
- Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702. e13.
- Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583-589.
- Himmelstein DS, Lizee A, Hessler C, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017;6:e26726.
- Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The need for multi-omics biomarker signatures in precision medicine. Int J Mol Sci. 2019;20(19):4781.
- Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241-1250.
- Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871-876.
- Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF. Generative models for molecular discovery: recent advances and challenges. WIREs Comput Mol Sci. 2022;12(5):e1608.
- Sansone SA, McQuilton P, Rocca-Serra P, et al. FAIRsharing as a community approach to standards, repositories and policies. Nat Biotechnol. 2019;37(4):358-367.
- Liu T, Zhong L, Sun X, et al. Machine learning-driven multi-targeted drug discovery in colon cancer using bio-marker signatures. npj Precis Onc. 2025;9:297.
- Li W, Chen Y, Zhang X, et al. Drug repurposing based on the DTD-GNN graph neural network: revealing the relationships among drugs, targets and diseases. BMC Genomics. 2024;25:584.
- Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463-477.
- Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93.
- Price WN 2nd, Cohen IG. Privacy in the age of medical big data. Nat Med. 2019;25(1):37-43.
- Schneider P, Walters WP, Plowright AT, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353-364.
- Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119.
- Sheller MJ, Edwards B, Reina GA, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10(1):12598.
- Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring fairness in machine learning to advance health equity. Ann Intern Med. 2018;169(12):866-872.
- Vayena E, Blasimme A, Cohen IG. Machine learning in medicine: addressing ethical challenges. PLoS Med. 2018;15(11):e1002689.
- Knoppers BM, Thorogood A. Ethics and big data in health. Curr Opin Syst Biol. 2017;4:53-57.
- Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
- Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24:695-713.
- Ma S, Zhang B, LaFave LM, et al. Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023;24:494-515.
- Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257-272.
- Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature. 2021;596(7871):211-220.
- Lewis SM, Asselin-Labat ML, Nguyen Q, et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat Methods. 2021;18(9):997-1012.
- Chen L, Wang X, Zhou Y, et al. Advances in single-cell omics: transformative applications in basic and clinical research. Curr Opin Biotechnol. 2025;87:103249.
- Cao ZJ, Gao G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat Biotechnol. 2022;40:1458-1466.
- Long Y, Ang KS, Li M, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat Commun. 2023;14:1155.
- Nicheformer: a foundation model for single-cell and spatial omics. Nat Methods. 2025;22:2525-2538.
- Zhou X, Chen S, Liu F, et al. Spatial integration of multi-omics single-cell data with SIMO. Nat Commun. 2025;12:1234.
- Hu Y, Wang X, Shen Y, et al. Benchmarking algorithms for single-cell multi-omics prediction and integration. Nat Methods. 2024;21:2182-2194.
- Cui H, Wang C, Maan H, et al. Towards multimodal foundation models in molecular cell biology. Nature. 2025;640:623-633.
- Ma C, Zhang H, Rao Y, et al. AI-driven virtual cell models in preclinical research: technical pathways, validation mechanisms, and clinical translation potential. npj Digit Med. 2025;8:45.
- Fu S, Wang S, Si D, et al. Benchmarking single-cell multi-modal data integrations. Nat Methods. 2025;22:1892-1906.
- Antonsson SE, Melsted P. Batch correction methods used in single-cell RNA sequencing analyses are often poorly calibrated. Genome Res. 2025;35:1832-1841.
- Osipov A, Nikolic O, Gertych A, et al. The molecular twin artificial-intelligence platform integrates multi-omic data to predict outcomes for pancreatic adenocarcinoma patients. Nat Cancer. 2024;5:299-314.
- Gangwal A, Lavecchia A. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discov Today. 2025;30:104360.
- Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-522.
- Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff (Millwood). 2018;37(5):694-701.
- Beam AL, Manrai AK, Ghassemi M. Challenges to the reproducibility of machine learning models in health care. JAMA. 2020;323(4):305-306.
- Moor M, Banerjee O, Abad ZSH, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616(7956):259-265.
- He X, Li J, Chen Y, et al. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187-200.
- Santos A, Colaço AR, Nielsen AB, et al. A knowledge graph to interpret clinical proteomics data. Nat Biotechnol. 2022;40(5):692-702.
- Chandak P, Huang K, Zitnik M. Building a knowledge graph to enable precision medicine. Sci Data. 2023;10(1):67.
- Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25(5):792-804.
- Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol. 2024;137:104252.