References
- Mayor, S. (2007). Genome sequence of one individual is published for first time. BMJ, 335, 530-531.https://doi.org/10.1136/bmj.39335.753009.94
- Sarkar, A., & Nandineni, M.R. (2017). Association of common genetic variants with human skin color variation in Indian populations. American Journal of Human Biology, 30, 1-11. https://doi.org/10.1002/ajhb.23068
- Qiu, J., Nechaev, D., & Rost, B. (2020). Protein–protein and protein-nucleic acid binding residues are important for common and rare sequence variants in human. BMC Bioinformatics, 21, 1-17. https://doi.org/10.1186/s12859-020-03759-0
- Kechavarzi, B., & Janga, S.C. (2014). Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biology, 15, 1-16. https://doi.org/10.1186/gb-2014-15-1-r14
- Wang, M., Zhao, X.M., Takemoto, K., Xu, H., Li, Y., Akutsu, T., & Song, J. (2012). FunSAV: Predicting the functional effect of single amino acid variants using a two-stage random forest model. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0043847
- Lukong, K.E., Chang, K.W., Khandjian, E.W., & Richard, S. (2008). RNA-binding proteins in human genetic disease. Trends in Genetics, 24, 416-425.
- Yates, C.M., Filippis, I., Kelley, L.A., & Sternberg, M.J. (2014). SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426, 2692-2701. https://doi.org/10.1016/j.jmb.2014.04.026
- National Cancer Institute. (2020). BRCA gene mutations: Cancer risk and genetic testing. National Cancer Institute: Washington, DC, USA.
- Clark, S.L., Rodriguez, A.M., Snyder, R.R., Hankins, G.D., & Boehning, D. (2012). Structure-function of the tumor suppressor BRCA1. Computational and Structural Biotechnology Journal, 1(1), e201204005. https://doi.org/10.5936/csbj.201204005
- Ismail, T., Alzneika, S., Riguene, E., Al-maraghi, S., Alabdulrazzak, A., Al-Khal, N., Fetais, S., Thanassoulas, A., Al-Farsi, H., & Nomikos, M. (2024). BRCA1 and its vulnerable C-Terminal BRCT domain: structure, function, genetic mutations and links to diagnosis and treatment of breast and ovarian cancer. Pharmaceuticals, 17(3), 333. https://doi.org/10.3390/ph17030333
- Harper, J.W., & Elledge, S.J. (2007). The DNA damage response: Ten years later. Molecular Cell, 28(5), 739-745.
- Deng, C.X. (2006). (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Research, 34(5), 1416-1426. https://doi.org/10.1093/nar/gkl010
- Grzelak, D. (2021). Treatment options for germline BRCA-mutated metastatic pancreatic adenocarcinoma. Journal of the Advanced Practitioner in Oncology, 12(5), 488. https://doi.org/10.6004/jadpro.2021.12.5.4
- Horne, J., & Shukla, D. (2022). Recent advances in machine learning variant effect prediction tools for protein engineering. Industrial & Engineering Chemistry Research, 61(19), 6235-6245.
- Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, P., Canny, J., Abbeel, P., & Song Y. (2019). Evaluating protein transfer learning with TAPE. Advances in Neural Information Processing Systems, 32, 9689-9701.
- LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), 2278–2324.
- Sara, S.T., Hasan, M.M., Ahmad, A., & Shatabda, S. (2021). Convolutional neural networks with image representation of amino acid sequences for protein function prediction. Computational Biology and Chemistry, 92, 107494. https://doi.org/10.1016/j.compbiolchem.2021.107494
- Nair, V., & Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, p. 807–814.
- Chawla, N.V, Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16,321-357. https://doi.org/10.1613/jair.953
- Jadwal, P.K., Jain, S., Pathak, S., & Agarwal, B. (2022). Improved resampling algorithm through a modified oversampling approach based on spectral clustering and SMOTE. Microsystem Technologies, 28(12), 2669-2677. https://doi.org/10.1007/s00542-022-05287-8
- Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated Machine Learning: Methods, Systems, Challenges, 3-33.
- Li, Y., Chen, L., Lv, J., Chen, X., Zeng, B., Chen, M., Guo, W., Lin, Y., Yu, L., Hou, J., Li, J., Zhou, P., Zhang, W., Li, S., Jin, X., Cai, W., Zhang, K., Huang, Y., Wang, C., & Fu, F. (2022). Clinical application of artificial neural network (ANN) modeling to predict BRCA1/2 germline deleterious variants in Chinese bilateral primary breast cancer patients. BMC Cancer, 22(1), 1125. https://doi.org/10.1186/s12885-022-10160-y
- Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C.L., Ma, J., & Fergus, R. (2021). Biological structure and function emerge from scaling un-supervised learning to 250 million protein sequences.” In: Proceedings of the National Academy of Sciences, p.118.
- Li, C., Zhang, L., Zhuo, Z., Su, F., Li, H., Xu, S., Liu, Y., Zhang, Z., Xie, Y., Yu, X., Bian, L., & Xiao, F. (2023). Artificial intelligence-based recognition for variant pathogenicity of BRCA1 using alphafold2-predicted structures. Theranostics, 13(1), 391. https://doi.org/10.7150/thno.79362