Have a personal or library account? Click to login
Using Convolutional Neural Networks with Image-Based Representations of Amino Acid Sequences for Predicting the Effects of Genetic Variants Cover

Using Convolutional Neural Networks with Image-Based Representations of Amino Acid Sequences for Predicting the Effects of Genetic Variants

Open Access
|Oct 2025

References

  1. Mayor, S. (2007). Genome sequence of one individual is published for first time. BMJ, 335, 530-531.https://doi.org/10.1136/bmj.39335.753009.94
  2. Sarkar, A., & Nandineni, M.R. (2017). Association of common genetic variants with human skin color variation in Indian populations. American Journal of Human Biology, 30, 1-11. https://doi.org/10.1002/ajhb.23068
  3. Qiu, J., Nechaev, D., & Rost, B. (2020). Protein–protein and protein-nucleic acid binding residues are important for common and rare sequence variants in human. BMC Bioinformatics, 21, 1-17. https://doi.org/10.1186/s12859-020-03759-0
  4. Kechavarzi, B., & Janga, S.C. (2014). Dissecting the expression landscape of RNA-binding proteins in human cancers. Genome Biology, 15, 1-16. https://doi.org/10.1186/gb-2014-15-1-r14
  5. Wang, M., Zhao, X.M., Takemoto, K., Xu, H., Li, Y., Akutsu, T., & Song, J. (2012). FunSAV: Predicting the functional effect of single amino acid variants using a two-stage random forest model. PLoS ONE, 7. https://doi.org/10.1371/journal.pone.0043847
  6. Lukong, K.E., Chang, K.W., Khandjian, E.W., & Richard, S. (2008). RNA-binding proteins in human genetic disease. Trends in Genetics, 24, 416-425.
  7. Yates, C.M., Filippis, I., Kelley, L.A., & Sternberg, M.J. (2014). SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426, 2692-2701. https://doi.org/10.1016/j.jmb.2014.04.026
  8. National Cancer Institute. (2020). BRCA gene mutations: Cancer risk and genetic testing. National Cancer Institute: Washington, DC, USA.
  9. Clark, S.L., Rodriguez, A.M., Snyder, R.R., Hankins, G.D., & Boehning, D. (2012). Structure-function of the tumor suppressor BRCA1. Computational and Structural Biotechnology Journal, 1(1), e201204005. https://doi.org/10.5936/csbj.201204005
  10. Ismail, T., Alzneika, S., Riguene, E., Al-maraghi, S., Alabdulrazzak, A., Al-Khal, N., Fetais, S., Thanassoulas, A., Al-Farsi, H., & Nomikos, M. (2024). BRCA1 and its vulnerable C-Terminal BRCT domain: structure, function, genetic mutations and links to diagnosis and treatment of breast and ovarian cancer. Pharmaceuticals, 17(3), 333. https://doi.org/10.3390/ph17030333
  11. Harper, J.W., & Elledge, S.J. (2007). The DNA damage response: Ten years later. Molecular Cell, 28(5), 739-745.
  12. Deng, C.X. (2006). (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Research, 34(5), 1416-1426. https://doi.org/10.1093/nar/gkl010
  13. Grzelak, D. (2021). Treatment options for germline BRCA-mutated metastatic pancreatic adenocarcinoma. Journal of the Advanced Practitioner in Oncology, 12(5), 488. https://doi.org/10.6004/jadpro.2021.12.5.4
  14. Horne, J., & Shukla, D. (2022). Recent advances in machine learning variant effect prediction tools for protein engineering. Industrial & Engineering Chemistry Research, 61(19), 6235-6245.
  15. Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, P., Canny, J., Abbeel, P., & Song Y. (2019). Evaluating protein transfer learning with TAPE. Advances in Neural Information Processing Systems, 32, 9689-9701.
  16. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), 2278–2324.
  17. Sara, S.T., Hasan, M.M., Ahmad, A., & Shatabda, S. (2021). Convolutional neural networks with image representation of amino acid sequences for protein function prediction. Computational Biology and Chemistry, 92, 107494. https://doi.org/10.1016/j.compbiolchem.2021.107494
  18. Nair, V., & Hinton, G.E. (2010). Rectified linear units improve restricted Boltzmann machines. Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, p. 807–814.
  19. Chawla, N.V, Bowyer, K.W., Hall, L.O., & Kegelmeyer, W.P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16,321-357. https://doi.org/10.1613/jair.953
  20. Jadwal, P.K., Jain, S., Pathak, S., & Agarwal, B. (2022). Improved resampling algorithm through a modified oversampling approach based on spectral clustering and SMOTE. Microsystem Technologies, 28(12), 2669-2677. https://doi.org/10.1007/s00542-022-05287-8
  21. Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated Machine Learning: Methods, Systems, Challenges, 3-33.
  22. Li, Y., Chen, L., Lv, J., Chen, X., Zeng, B., Chen, M., Guo, W., Lin, Y., Yu, L., Hou, J., Li, J., Zhou, P., Zhang, W., Li, S., Jin, X., Cai, W., Zhang, K., Huang, Y., Wang, C., & Fu, F. (2022). Clinical application of artificial neural network (ANN) modeling to predict BRCA1/2 germline deleterious variants in Chinese bilateral primary breast cancer patients. BMC Cancer, 22(1), 1125. https://doi.org/10.1186/s12885-022-10160-y
  23. Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C.L., Ma, J., & Fergus, R. (2021). Biological structure and function emerge from scaling un-supervised learning to 250 million protein sequences.” In: Proceedings of the National Academy of Sciences, p.118.
  24. Li, C., Zhang, L., Zhuo, Z., Su, F., Li, H., Xu, S., Liu, Y., Zhang, Z., Xie, Y., Yu, X., Bian, L., & Xiao, F. (2023). Artificial intelligence-based recognition for variant pathogenicity of BRCA1 using alphafold2-predicted structures. Theranostics, 13(1), 391. https://doi.org/10.7150/thno.79362
Language: English
Page range: 247 - 256
Published on: Oct 23, 2025
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Gülbahar Merve Şilbir, Burçin Kurt, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.