References
- Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13:1387–97.
- Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics. 2015;16:273–85.
- Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Cell Culture Based in vitro Test Systems for Anticancer Drug Screening. Front Bioeng Biotechnol. 2020;8.
- Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–77.
- Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14:910–9.
- Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev Technol. 2014;12:207–18.
- Palomeras S, Rabionet M, Ferrer I, Sarrats A, Garcia-Romeu ML, Puig T, et al. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds. Molecules. 2016;21(4):484.
- Enayati M, Puchhammer S, Iturri J, Grasl C, Kaun C, Baudis S, et al. Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. J Mech Behav Biomed Mater. 2020;112:104077.
- Han D, Chen G, Xiao M, Wang S, Chen S, Peng X, et al. Biodegradable and Toughened Composite of Poly(Propylene Carbonate)/Thermoplastic Polyurethane (PPC/TPU): Effect of Hydrogen Bonding. Int J Mol Sci. 2018;19(7):2021.
- Düzyer Ş. Fabrication of electrospun poly(ethylene terephthalate) scaffolds: characterization and their potential on cell proliferation in vitro. Textile and Apparel. 2017;27(3):334–41.
- Polonio-Alcalá E, Rabionet M, Gallardo X, Angelats D, Ciurana J, Ruiz-Martínez S, et al. PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers (Basel). 2019;11(5):916.
- Feng S, Duan X, Lo P-K, Liu S, Liu X, Chen H, et al. Expansion of breast cancer stem cells with fibrous scaffolds. Integr Biol. 2013;5(6):768–77.
- Mi H-Y, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng L-S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B. 2017;5:4137–51.
- Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147–54.
- Geyik OG, Nalbant B, Husemoglu RB, Yuce Z, Unek T, Havitcioglu H. Investigation of surface adhesion of MCF-7 cells in 3D printed PET and PLA tissue scaffold models. J Biotechnol Biomater. 2019;6:2161–0487.
- Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng. 2017;11:31.
- Lynch CR, Kondiah PPD, Choonara YE. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules. 2021;26(9):2518.
- Bougherara H, Bureau MN, Yahia L. Bone remodeling in a new biomimetic polymer-composite hip stem. J Biomed Mater Res A. 2010;92:164–74.
- Husemoglu RB, Nalbant B, Geyik ÖG, Ünek T, Yüce Z, Havitçioğlu H. Investigation of surface adhesion abilities of MCF-7 cells on 3D printed PCL and PLA scaffold models. J Biomater Tissue Eng. 2019;9(3):217–23.
- Hassan M, Omar A, Daskalakis E, Hou Y, Huang B, Strashnov I, et al. The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers. 2020;12(5):1032.
- Lis-Bartos A, Smieszek A, Frańczyk K, Marycz K. Fabrication, characterization, and cytotoxicity of thermoplastic polyurethane/poly(lactic acid) material using human adipose-derived mesenchymal stromal stem cells (hASCs). Polymers. 2018;10(10):1073.
- Zhang J, Liu X, Wang L, Chen Y, Li X. Integration of SEM and confocal microscopy for evaluating cell– scaffold interactions in tissue engineering. Micron. 2024;180:103048.
- Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.
- Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32(12):1728–43.
- Mishra R, Roux BM, Posner R, Sakiyama-Elbert SE, Dunbar GL. Challenges and prospects of scaffold-based neural tissue engineering. Biomed Mater. 2019;14(4):042001.