Have a personal or library account? Click to login
Tissue Engineering of 3D-Printed Scaffolds for Breast Cancer Research: A Study on Cell Viability and Adhesion Cover

Tissue Engineering of 3D-Printed Scaffolds for Breast Cancer Research: A Study on Cell Viability and Adhesion

Open Access
|Jul 2025

References

  1. Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk Factors and Preventions of Breast Cancer. Int J Biol Sci. 2017;13:1387–97.
  2. Niu N, Wang L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics. 2015;16:273–85.
  3. Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Cell Culture Based in vitro Test Systems for Anticancer Drug Screening. Front Bioeng Biotechnol. 2020;8.
  4. Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–77.
  5. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14:910–9.
  6. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-Dimensional Cell Culture Systems and Their Applications in Drug Discovery and Cell-Based Biosensors. Assay Drug Dev Technol. 2014;12:207–18.
  7. Palomeras S, Rabionet M, Ferrer I, Sarrats A, Garcia-Romeu ML, Puig T, et al. Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds. Molecules. 2016;21(4):484.
  8. Enayati M, Puchhammer S, Iturri J, Grasl C, Kaun C, Baudis S, et al. Assessment of a long-term in vitro model to characterize the mechanical behavior and macrophage-mediated degradation of a novel, degradable, electrospun poly-urethane vascular graft. J Mech Behav Biomed Mater. 2020;112:104077.
  9. Han D, Chen G, Xiao M, Wang S, Chen S, Peng X, et al. Biodegradable and Toughened Composite of Poly(Propylene Carbonate)/Thermoplastic Polyurethane (PPC/TPU): Effect of Hydrogen Bonding. Int J Mol Sci. 2018;19(7):2021.
  10. Düzyer Ş. Fabrication of electrospun poly(ethylene terephthalate) scaffolds: characterization and their potential on cell proliferation in vitro. Textile and Apparel. 2017;27(3):334–41.
  11. Polonio-Alcalá E, Rabionet M, Gallardo X, Angelats D, Ciurana J, Ruiz-Martínez S, et al. PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers (Basel). 2019;11(5):916.
  12. Feng S, Duan X, Lo P-K, Liu S, Liu X, Chen H, et al. Expansion of breast cancer stem cells with fibrous scaffolds. Integr Biol. 2013;5(6):768–77.
  13. Mi H-Y, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng L-S. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B. 2017;5:4137–51.
  14. Comşa Ş, Cîmpean AM, Raica M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res. 2015;35(6):3147–54.
  15. Geyik OG, Nalbant B, Husemoglu RB, Yuce Z, Unek T, Havitcioglu H. Investigation of surface adhesion of MCF-7 cells in 3D printed PET and PLA tissue scaffold models. J Biotechnol Biomater. 2019;6:2161–0487.
  16. Gregor A, Filová E, Novák M, Kronek J, Chlup H, Buzgo M, et al. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng. 2017;11:31.
  17. Lynch CR, Kondiah PPD, Choonara YE. Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules. 2021;26(9):2518.
  18. Bougherara H, Bureau MN, Yahia L. Bone remodeling in a new biomimetic polymer-composite hip stem. J Biomed Mater Res A. 2010;92:164–74.
  19. Husemoglu RB, Nalbant B, Geyik ÖG, Ünek T, Yüce Z, Havitçioğlu H. Investigation of surface adhesion abilities of MCF-7 cells on 3D printed PCL and PLA scaffold models. J Biomater Tissue Eng. 2019;9(3):217–23.
  20. Hassan M, Omar A, Daskalakis E, Hou Y, Huang B, Strashnov I, et al. The potential of polyethylene terephthalate glycol as biomaterial for bone tissue engineering. Polymers. 2020;12(5):1032.
  21. Lis-Bartos A, Smieszek A, Frańczyk K, Marycz K. Fabrication, characterization, and cytotoxicity of thermoplastic polyurethane/poly(lactic acid) material using human adipose-derived mesenchymal stromal stem cells (hASCs). Polymers. 2018;10(10):1073.
  22. Zhang J, Liu X, Wang L, Chen Y, Li X. Integration of SEM and confocal microscopy for evaluating cell– scaffold interactions in tissue engineering. Micron. 2024;180:103048.
  23. Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130(4):601–10.
  24. Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32(12):1728–43.
  25. Mishra R, Roux BM, Posner R, Sakiyama-Elbert SE, Dunbar GL. Challenges and prospects of scaffold-based neural tissue engineering. Biomed Mater. 2019;14(4):042001.
Language: English
Page range: 207 - 215
Published on: Jul 17, 2025
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Belma Nalbant, Resit B. Husemoglu, Oyku G. Geyik, Khayala Rasulova, Zeynep Yuce, Hasan Havitcioglu, Tarkan Unek, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.