Have a personal or library account? Click to login
Potential Molecular Mechanisms of Paederia Foetida L. In Gout Treatment Through Network Pharmacology And Molecular Docking Cover

Potential Molecular Mechanisms of Paederia Foetida L. In Gout Treatment Through Network Pharmacology And Molecular Docking

Open Access
|Apr 2025

References

  1. Dalbeth N, Choi HK, Joosten L a. B, et al. Gout. Nature Reviews Disease Primers. 2019;5(1). doi:10.1038/s41572-019-0115-y
  2. Liu P, Xu H, Shi Y, Deng L, Chen X. Potential molecular mechanisms of plantain in the treatment of gout and hyperuricemia based on network pharmacology. Evidence-based Complementary and Alternative Medicine. 2020;2020(1). doi:10.1155/2020/3023127
  3. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis & Rheumatology. 2019;71(6):991-999. doi:10.1002/art.40807
  4. Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Annals of the Rheumatic Diseases. 2014;74(4):661-667. doi:10.1136/annrheumdis-2013-204463
  5. Nguyen TBN, Nguyen TT, Nguyen NV, Pham LA. The elevated blood uric acid rates, gout incidence, and related factors in adults were investigated at the family medicine clinic, Ho Chi Minh City University Medical Center. Vietnam Medical Journal. 2023;531(2). doi:10.51298/vmj.v531i2.7197
  6. Liu Y, Luo D, Xu B. The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout. Medicine. 2022;101(47):e31535. doi:10.1097/md.0000000000031535
  7. Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nature Reviews Rheumatology. 2015;11(11):649-662. doi:10.1038/nrrheum.2015.91
  8. Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective – A review. Journal of Advanced Research. 2017;8(5):495-511. doi:10.1016/j.jare.2017.04.008
  9. Wang L, Jiang Y, Han T, Zheng C, Qin L. A phytochemical, pharmacological and clinical profile of Paederia foetida and P. scandens. Natural Product Communications. 2014;9(6):1934578X1400900. doi:10.1177/1934578x1400900640
  10. Dutta PP, Marbaniang K, Sen S, Dey BK, Talukdar NC. A review on phytochemistry of Paederia foetida Linn. Phytomedicine Plus. 2023;3(1):100411. doi:10.1016/j.phyplu.2023.100411
  11. Huang Q, Liu R, Liu J, Huang Q, Liu S, Jiang Y. Integrated network pharmacology analysis and experimental validation to reveal the mechanism of anti-insulin resistance effects of Moringa oleifera seeds. Drug Design Development and Therapy. 2020; Volume 14:4069-4084. doi:10.2147/dddt.s265198
  12. Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for Traditional Chinese Medicine: Review and assessment. Frontiers in Pharmacology. 2019;10. doi:10.3389/fphar.2019.00123
  13. Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics. 2014;6(1). doi:10.1186/1758-2946-6-13
  14. Ge X, Zhang Y, Fang R, Zhao J, Huang J. Exploring the inhibition mechanism of interleukin-1-beta in gouty arthritis by Polygonum cuspidatum using network pharmacology and molecular docking: A review. Medicine. 2023;102(29):e34396. doi:10.1097/md.0000000000034396
  15. Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. International Journal of Molecular Sciences. 2012;13(6):6964-6982. doi:10.3390/ijms13066964
  16. Tao W, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. Journal of Ethnopharmacology. 2012;145(1):1-10. doi:10.1016/j.jep.2012.09.051
  17. Bateman A, Martin MJ, Orchard S, et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 2022;51(D1):D523-D531. doi:10.1093/nar/gkac1052
  18. Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics. 2016;54(1). doi:10.1002/cpbi.5
  19. Zhou Y, Zhang Y, Zhao D, et al. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Research. 2023;52(D1):D1465-D1477. doi:10.1093/nar/gkad751
  20. Amberger JS, Hamosh A. Searching Online Mendelian Inheritance in Man (OMIM): a knowledgebase of human genes and genetic phenotypes. Current Protocols in Bioinformatics. 2017;58(1). doi:10.1002/cpbi.27
  21. Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html
  22. Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research. 2022;51(D1):D638-D646. doi:10.1093/nar/gkac1000
  23. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chinese Journal of Natural Medicines. 2013;11(2):110-120. doi:10.1016/s1875-5364(13)60037-0
  24. Liu Y, Luo D, Xu B. The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout. Medicine. 2022;101(47):e31535. doi:10.1097/md.0000000000031535
  25. Thomas PD. The gene ontology and the meaning of biological function. Methods in Molecular Biology. Published online November 3, 2016:15-24. doi:10.1007/978-1-4939-3743-1_2
  26. Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 2000;28(1):27-30. doi:10.1093/nar/28.1.27
  27. Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research. 2022;50(W1):W216-W221. doi:10.1093/nar/gkac194
  28. Geng YH, Yan JH, Han L, et al. Potential molecular mechanisms of Ermiao san in the treatment of hyperuricemia and gout based on network pharmacology with molecular docking. Medicine. 2022;101(37):e30525. doi:10.1097/md.0000000000030525
  29. Meng XY, Zhang HX, Mezei M, Cui M. Molecular Docking: a powerful approach for Structure-Based drug discovery. Current Computer-Aided Drug Design. 2011;7(2):146-157. doi:10.2174/157340911795677602
  30. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry. 2009;31(2):455-461. doi:10.1002/jcc.21334
  31. FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American college of rheumatology guideline for the management of gout. Arthritis Care & Research. 2020;72(6):744-760. doi:10.1002/acr.24180
  32. Latest guidance on the management of gout. BMJ. Published online July 18, 2018:k2893. doi:10.1136/bmj.k2893
  33. Nutmakul T. A review on benefits of quercetin in hyper-uricemia and gouty arthritis. Saudi Pharmaceutical Journal. 2022;30(7):918-926. doi:10.1016/j.jsps.2022.04.013
  34. Li N, Chen S, Deng W, et al. Kaempferol attenuates gouty arthritis by regulating the balance of TH17/Treg cells and secretion of IL-17. Inflammation. 2023;46(5):1901-1916. doi:10.1007/s10753-023-01849-8
  35. Wang Y, Zhang G, Pan J, Gong D. Novel insights into the inhibitory mechanism of kaempferol on Xanthine oxidase. Journal of Agricultural and Food Chemistry. 2014;63(2):526-534. doi:10.1021/jf505584m
  36. Qu P, Du S, Wang W, et al. Treatment of gouty arthritis with traditional Chinese medicine decoction: Meta-analysis, network pharmacology analysis, and molecular docking. Medicine. 2024;103(1):e36722. doi:10.1097/md.0000000000036722
  37. Sun Y, Gao L, Hou W, Wu J. β-Sitosterol alleviates inflammatory response via inhibiting the activation of ERK/p38 and NF-κB pathways in LPS-Exposed BV2 cells. BioMed Research International. 2020;2020:1-10. doi:10.1155/2020/7532306
  38. Ma Y, Zhou LL, Yan HY, Liu M. Effects of Extracts from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on MSU Crystal-Induced Rats Gouty Arthritis. The American Journal of Chinese Medicine. 2009;37(04):669-683. doi:10.1142/s0192415x09007156
  39. Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures and advances in therapy. Signal Transduction and Targeted Therapy. 2023;8(1). doi:10.1038/s41392-023-01347-1
  40. Carrà G, Lingua MF, Maffeo B, Taulli R, Morotti A. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cellular and Molecular Life Sciences. 2020;77(22):4449-4458. doi:10.1007/s00018-020-03524-9
  41. Tukaj S, Węgrzyn G. Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress and Chaperones. 2016;21(2):213-218. doi:10.1007/s12192-016-0670-z
  42. Schlesinger N. Anti-Interleukin-1 therapy in the management of gout. Current Rheumatology Reports. 2014;16(2). doi:10.1007/s11926-013-0398-z
  43. Amaral FA, Bastos LFS, Oliveira THC, et al. Transmembrane TNF‐α is sufficient for articular inflammation and hypernociception in a mouse model of gout. European Journal of Immunology. 2015;46(1):204-211. doi:10.1002/eji.201545798
  44. Barros CH, Matosinhos RC, Bernardes ACFPF, et al. Lychnophora pinaster’s effects on inflammation and pain in acute gout. Journal of Ethnopharmacology. 2021;280:114460. doi:10.1016/j.jep.2021.114460
  45. Zi X, Su R, Su R, et al. Elevated serum IL-2 and Th17/Treg imbalance are associated with gout. Clinical and Experimental Medicine. 2024;24(1). doi:10.1007/s10238-023-01253-4
  46. Țiburcă L, Bembea M, Zaha DC, et al. The Treatment with Interleukin 17 Inhibitors and Immune-Mediated Inflammatory Diseases. Current Issues in Molecular Biology. 2022;44(5):1851-1866. doi:10.3390/cimb44050127
  47. Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: the yin and the yang. Trends in Immunology. 2017;38(5):310-322. doi:10.1016/j.it.2017.01.006
  48. Bao J, Shi Y, Tao M, Liu N, Zhuang S, Yuan W. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clinical Science. 2018;132(21):2299-2322. doi:10.1042/cs20180563
  49. Sun X, Yang L, Sun H, et al. TCM and related active compounds in the treatment of gout: the regulation of signaling pathway and urate transporter. Frontiers in Pharmacology. 2023;14. doi:10.3389/fphar.2023.1275974
  50. Zhou Q, Sun HJ, Liu SM, et al. Anti-inflammation effects of the total saponin fraction from Dioscorea nipponica Makino on rats with gouty arthritis by influencing MAPK signalling pathway. BMC Complementary Medicine and Therapies. 2020;20(1). doi:10.1186/s12906-020-03055-7
  51. Zhao F, Guochun L, Yang Y, Shi L, Xu L, Yin L. A network pharmacology approach to determine active ingredients and rationality of herb combinations of Modified-Simiaowan for treatment of gout. Journal of Ethnopharmacology. 2015;168:1-16. doi:10.1016/j.jep.2015.03.035
  52. Guma M, Kashiwakura JI, Crain B, et al. JNK1 controls mast cell degranulation and IL-1β production in inflammatory arthritis. Proceedings of the National Academy of Sciences. 2010;107(51):22122-22127. doi:10.1073/pnas.1016401107
  53. Tseng CC, Wong MC, Liao WT, et al. Systemic investigation of promoter-wide methylome and genome variations in gout. International Journal of Molecular Sciences. 2020;21(13):4702. doi:10.3390/ijms21134702
  54. Xu L, Cheng J, Lu J, et al. Integrating network pharmacology and experimental validation to clarify the anti-hyperuricemia mechanism of Cortex phellodendri in mice. Frontiers in Pharmacology. 2022;13. doi:10.3389/fphar.2022.964593
  55. Yu W, Cheng JD. Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Frontiers in Pharmacology. 2020;11. doi:10.3389/fphar.2020.582680
Language: English
Page range: 138 - 153
Published on: Apr 17, 2025
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Hoang Quoc Tuan, Hoang Ngoc Phuong Vy, Nguyen Thi Anh Thu, Phan Le Nhu Quynh, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.