Have a personal or library account? Click to login
ClioMD: An artificial intelligence model for ciliopathies Cover

References

  1. Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal endoscopy, 92(4), 807-812.
  2. Gupta, N., Singh, H., & Singla, J. (2022, August). Fuzzy logic-based systems for medical diagnosis–A review. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1058-1062). IEEE.
  3. Wheway, G., Mitchison, H. M., & Genomics England Research Consortium (2019). Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Frontiers in genetics, 10, 127. https://doi.org/10.3389/fgene.2019.00127
  4. Focşa, I. O., Budişteanu, M., & Bălgrădean, M. (2021). Clinical and genetic heterogeneity of primary ciliopathies. International Journal of Molecular Medicine, 48(3), 176.
  5. Elawad, O. A. M. A., Dafallah, M. A., Ahmed, M. M. M., Albashir, A. A. D., Abdalla, S. M. A., Yousif, H. H. M., ... & Abu Shama, E. A. E. (2022). Bardet–Biedl syndrome: a case series. Journal of Medical Case Reports, 16(1), 1-9.
  6. Spahiu, L., Behluli, E., Grajçevci-Uka, V., Liehr, T., & Temaj, G. (2022). Joubert syndrome: molecular basis and treatment. Journal of Mother and Child, 26(1), 118-123.
  7. Bachmann-Gagescu, R., Dempsey, J. C., Bulgheroni, S., Chen, M. L., D’Arrigo, S., Glass, I. A., ... & Doherty, D. (2020). Healthcare recommendations for Joubert syndrome. American journal of medical genetics Part A, 182(1), 229-249.
  8. Valentini, G., Saia, M., Farello, G., Salpietro, V., Mancuso, A., Ceravolo, I., ... & Cucinotta, F. (2023). Meckel Syndrome: A Clinical and Molecular Overview. Journal of Pediatric Neurology, 21(01), 062-067.
  9. Turkyilmaz, A., Geckinli, B. B., Alavanda, C., Arslan Ates, E., Buyukbayrak, E. E., Eren, S. F., & Arman, A. (2021). Meckel-Gruber syndrome: clinical and molecular genetic profiles in two fetuses and review of the current literature. Genetic testing and molecular biomarkers, 25(6), 445-451.
  10. O’Connor, M. G., Mosquera, R., Metjian, H., Marmor, M., Olivier, K. N., & Shapiro, A. J. (2023). Primary ciliary dyskinesia. Chest Pulmonary, 1(1), 100004.
  11. Shoemark, A., & Harman, K. (2021, August). Primary ciliary dyskinesia. In Seminars in respiratory and critical care medicine (Vol. 42, No. 04, pp. 537-548). Thieme Medical Publishers, Inc..
  12. Tahani, N., Maffei, P., Dollfus, H., Paisey, R., Valverde, D., Milan, G., ... & Geberhiwot, T. (2020). Consensus clinical management guidelines for Alström syndrome. Orphanet journal of rare diseases, 15, 1-22.
  13. Wexler, D., & Ms, M. D. (2023). Patient education: Preventing complications from diabetes (Beyond the Basics).
  14. Wolf, M. T., Bonsib, S. M., Larsen, C. P., & Hildebrandt, F. (2024). Nephronophthisis: a pathological and genetic perspective. Pediatric Nephrology, 39(7), 1977-2000.
  15. Yahalom, C., Volovelsky, O., Macarov, M., Altalbishi, A., Alsweiti, Y., Schneider, N., ... & Khateb, S. (2021). SENIOR–LØKEN SYNDROME: A Case Series and Review of the Renoretinal Phenotype and Advances of Molecular Diagnosis. Retina, 41(10), 2179-2187
  16. Franco, B., & Thauvin-Robinet, C. (2016). Update on oral-facial-digital syndromes (OFDS). Cilia, 5, 1-11.
  17. Elfaladonna, F., & Isa, I. G. T. (2022). UJI EFEKTIFITAS METODE FUZZY LOGIC MAMDANI PADA PENERIMAAN BEASISWA BANTUAN MENGGUNAKAN MATLAB. SINTECH (Science and Information Technology) Journal, 5(1), 75-86.
  18. Ab Talib, M. H., Mat Darus, I. Z., Mohd Yatim, H., Hadi, M. S., Mohd Saufi, M. S. R., & Ngadiman, N. H. A. (2022). Gain Scaling Tuning of Fuzzy Logic Sugeno Controller Type for Ride Comfort Suspension System Using Firefly Algorithm. In Enabling Industry 4.0 through Advances in Mechatronics (pp. 335-344). Springer, Singapore.
  19. Senturk, N., Tuncel, G., Dogan, B., Aliyeva, L., Dundar, M. S., Ozemri Sag, S., ... & Ergoren, M. C. (2021). BRCA Variations Risk Assessment in Breast Cancers Using Different Artificial Intelligence Models. Genes, 12(11), 1774.
  20. Decherchi, S., Pedrini, E., Mordenti, M., Cavalli, A., & Sangiorgi, L. (2021). Opportunities and Challenges for Machine Learning in Rare Diseases. Frontiers in medicine, 8, 747612. https://doi.org/10.3389/fmed.2021.747612
  21. Kakulapati, V., Sai Sandeep, R., Kranthi kumar, V., & Ramanjinailu, R. (2021). Fuzzy-based predictive analytics for early detection of disease—A machine learning approach. In ICT Systems and Sustainability: Proceedings of ICT4SD 2020, Volume 1 (pp. 89-99). Springer Singapore.
  22. Ali, M. L., Sadi, M. S., & Goni, M. O. (2024). Diagnosis of heart diseases: A fuzzy-logic-based approach. Plos one, 19(2), e0293112.
  23. Jain, V., & Raheja, S. (2015). Improving the prediction rate of diabetes using fuzzy expert system. IJ Information Technology and Computer Science, 7(10), 84-91.
Language: English
Page range: 128 - 137
Published on: Apr 17, 2025
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mahmut Çerkez Ergören, Niyazi Senturk, Manal Salah B. Ali, İlkem Özce Özcelik, Kübra Damla Erol, Sehime Gulsun Temel, Munis Dundar, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.