References
- Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal endoscopy, 92(4), 807-812.
- Gupta, N., Singh, H., & Singla, J. (2022, August). Fuzzy logic-based systems for medical diagnosis–A review. In 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1058-1062). IEEE.
- Wheway, G., Mitchison, H. M., & Genomics England Research Consortium (2019). Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Frontiers in genetics, 10, 127. https://doi.org/10.3389/fgene.2019.00127
- Focşa, I. O., Budişteanu, M., & Bălgrădean, M. (2021). Clinical and genetic heterogeneity of primary ciliopathies. International Journal of Molecular Medicine, 48(3), 176.
- Elawad, O. A. M. A., Dafallah, M. A., Ahmed, M. M. M., Albashir, A. A. D., Abdalla, S. M. A., Yousif, H. H. M., ... & Abu Shama, E. A. E. (2022). Bardet–Biedl syndrome: a case series. Journal of Medical Case Reports, 16(1), 1-9.
- Spahiu, L., Behluli, E., Grajçevci-Uka, V., Liehr, T., & Temaj, G. (2022). Joubert syndrome: molecular basis and treatment. Journal of Mother and Child, 26(1), 118-123.
- Bachmann-Gagescu, R., Dempsey, J. C., Bulgheroni, S., Chen, M. L., D’Arrigo, S., Glass, I. A., ... & Doherty, D. (2020). Healthcare recommendations for Joubert syndrome. American journal of medical genetics Part A, 182(1), 229-249.
- Valentini, G., Saia, M., Farello, G., Salpietro, V., Mancuso, A., Ceravolo, I., ... & Cucinotta, F. (2023). Meckel Syndrome: A Clinical and Molecular Overview. Journal of Pediatric Neurology, 21(01), 062-067.
- Turkyilmaz, A., Geckinli, B. B., Alavanda, C., Arslan Ates, E., Buyukbayrak, E. E., Eren, S. F., & Arman, A. (2021). Meckel-Gruber syndrome: clinical and molecular genetic profiles in two fetuses and review of the current literature. Genetic testing and molecular biomarkers, 25(6), 445-451.
- O’Connor, M. G., Mosquera, R., Metjian, H., Marmor, M., Olivier, K. N., & Shapiro, A. J. (2023). Primary ciliary dyskinesia. Chest Pulmonary, 1(1), 100004.
- Shoemark, A., & Harman, K. (2021, August). Primary ciliary dyskinesia. In Seminars in respiratory and critical care medicine (Vol. 42, No. 04, pp. 537-548). Thieme Medical Publishers, Inc..
- Tahani, N., Maffei, P., Dollfus, H., Paisey, R., Valverde, D., Milan, G., ... & Geberhiwot, T. (2020). Consensus clinical management guidelines for Alström syndrome. Orphanet journal of rare diseases, 15, 1-22.
- Wexler, D., & Ms, M. D. (2023). Patient education: Preventing complications from diabetes (Beyond the Basics).
- Wolf, M. T., Bonsib, S. M., Larsen, C. P., & Hildebrandt, F. (2024). Nephronophthisis: a pathological and genetic perspective. Pediatric Nephrology, 39(7), 1977-2000.
- Yahalom, C., Volovelsky, O., Macarov, M., Altalbishi, A., Alsweiti, Y., Schneider, N., ... & Khateb, S. (2021). SENIOR–LØKEN SYNDROME: A Case Series and Review of the Renoretinal Phenotype and Advances of Molecular Diagnosis. Retina, 41(10), 2179-2187
- Franco, B., & Thauvin-Robinet, C. (2016). Update on oral-facial-digital syndromes (OFDS). Cilia, 5, 1-11.
- Elfaladonna, F., & Isa, I. G. T. (2022). UJI EFEKTIFITAS METODE FUZZY LOGIC MAMDANI PADA PENERIMAAN BEASISWA BANTUAN MENGGUNAKAN MATLAB. SINTECH (Science and Information Technology) Journal, 5(1), 75-86.
- Ab Talib, M. H., Mat Darus, I. Z., Mohd Yatim, H., Hadi, M. S., Mohd Saufi, M. S. R., & Ngadiman, N. H. A. (2022). Gain Scaling Tuning of Fuzzy Logic Sugeno Controller Type for Ride Comfort Suspension System Using Firefly Algorithm. In Enabling Industry 4.0 through Advances in Mechatronics (pp. 335-344). Springer, Singapore.
- Senturk, N., Tuncel, G., Dogan, B., Aliyeva, L., Dundar, M. S., Ozemri Sag, S., ... & Ergoren, M. C. (2021). BRCA Variations Risk Assessment in Breast Cancers Using Different Artificial Intelligence Models. Genes, 12(11), 1774.
- Decherchi, S., Pedrini, E., Mordenti, M., Cavalli, A., & Sangiorgi, L. (2021). Opportunities and Challenges for Machine Learning in Rare Diseases. Frontiers in medicine, 8, 747612. https://doi.org/10.3389/fmed.2021.747612
- Kakulapati, V., Sai Sandeep, R., Kranthi kumar, V., & Ramanjinailu, R. (2021). Fuzzy-based predictive analytics for early detection of disease—A machine learning approach. In ICT Systems and Sustainability: Proceedings of ICT4SD 2020, Volume 1 (pp. 89-99). Springer Singapore.
- Ali, M. L., Sadi, M. S., & Goni, M. O. (2024). Diagnosis of heart diseases: A fuzzy-logic-based approach. Plos one, 19(2), e0293112.
- Jain, V., & Raheja, S. (2015). Improving the prediction rate of diabetes using fuzzy expert system. IJ Information Technology and Computer Science, 7(10), 84-91.