Aas, T. S., Grisdale-Helland, B., Terjesen, B. F., & Helland, S. J. (2006). Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture, 259(1-4), 365-376.
Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I. M., & Koutinas, A. A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 145, 710-716.
Al-Awadhi N.M., Razzaque M.A., Jonker D., Banat I.M. and Hamdan I.Y. (1995). Nutritional and toxicological evaluation of single-cell protein produced from Bacillus ssp. KISRI-TM1A in rats. J. Food Qual. 18, 495-509.
Al-shadeedi, M. J. B. 1998. The effect of different levels of single cell protein in broiler rations and bird densities on body weight and feed conversion ratio. J. Poult. Sci. 7:2-10.
Ashraf M. (1981). Nutritional evaluation of methanol-based yeast single-cell protein for growing pullets, laying hens and reproducing chickens, Ph D. Thesis. Iowa State Univ., Ames, Iowa.
Behera, Gayatree; Kawade, S.S.; Reddy, B.S.K; and Sedyaaw, Panchakarla, 2024. Single cell protein in aquaculture: a comprehensive review. International Journal of Development Research, 14, (04), 65385-65389.
Berge, G. M., Hatlen, B., Odom, J. M., & Ruyter, B. (2013). Physical treatment of high EPA Yarrowia lipolytica biomass increases the availability of n-3 highly unsaturated fatty acids when fed to Atlantic salmon. Aquaculture Nutrition, 19(2), 110–121.
Bhalla, T., Sharma, N. N., & Sharma, M. (2007). Production of metabolites, industrial enzymes, amino acids, organic acids, antibiotics, vitamins, and single cell proteins. Journal of Environmental Science, 6, 34–78.
Błazejak, S., et al. (2004). Distribution of magnesium in the Candida utilis ATCC 9950 yeast cells enriched in that element. Acta Scientiarum Polonorum Technologia Alimentaria, 3, 95-110.
Blomqvist, J., Pickova, J., Tilami, S. K., Sampels, S., Mikkelsen, N., Brandenburg, J., Sandgren, M., & Passoth, V. (2018). Oleaginous yeast as a component in fish feed. Scientific Reports, 8, 15945.
Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: A potential substitute in human and animal nutrition. Sustainability, 13,9284. https://doi.org/10.3390/su13169284">https://doi.org/10.3390/su13169284
Braude, R., Hosking, Z. D., Mitchell, K. D., Plonka, S., & Sambrook, I. E. (1977). Pruteen, a new source of protein for growing pigs. I. Metabolic experiment: Utilization of nitrogen. Livestock Production Science, 4, 79-89.
Brown, M. R., Barrett, S. M., Volkman, J. K., et al. (1996). Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquaculture. Aquaculture, 143(3-4), 341-360. https://doi.org/10.1016/0044-8486(96)01286-0">https://doi.org/10.1016/0044-8486(96)01286-0
Cheng, Y.-C., & Kim, S. W. (2022). Use of microorganisms as nutritional and functional feedstuffs for nursery pigs and broilers. Animals, 12, 3141. https://doi.org/10.3390/ani12223141">https://doi.org/10.3390/ani12223141
Cheng, Y.-C., Duarte, M. E., & Kim, S. W. (2022). Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health and apparent ileal digestibility of diets fed to nursery pigs. Animal Bioscience, 35, 605–613.
Chirwa, E and M. Lebitso. 2011. Pilot Evaluation of Single Cell Protein from Waste Activated Sludge Biomass as a Nutritional Supplement in Poultry. J. Water. Environ. Federation. 2011:2356-2369.
Czech, A., Smolczyk, A., Ognik, K., & Kiesz, M. (2016). Nutritional value of Yarrowia lipolytica yeast and its effect on growth performance indicators in piglets. Annals of Animal Science, 16, 1091–1100.
Daszkiewicz, T. Food Production in the Context of Global Developmental Challenges. Agriculture 2022, 12, 832. https://doi.org/10.3390/agriculture12060832">https://doi.org/10.3390/agriculture12060832.
De Tonnac, A., Guillevic, M., & Mourot, J. (2018). Fatty acid composition of several muscles and adipose tissues of pigs fed n-3 PUFA rich diets. Meat Science, 140, 1–8.
De Tonnac, A., Labussière, E., Vincent, A., & Mourot, J. (2016). Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs. British Journal of Nutrition, 116, 7–18.
den Haan, R., van Rensburg, E., Rose, S. H., Görgens, J. F., & van Zyl, W. H. (2015). Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Current Opinion in Biotechnology, 33, 32–38.
Edea, Chala. 2024. Single Cell Protein As An Alternative Protein Source In Broiler Diet - A Review. Int.J.Curr. Res.Aca.Rev. 12(5), 84-90. doi: https://doi.org/10.20546/ijcrar.2024.1205.009">https://doi.org/10.20546/ijcrar.2024.1205.009
Esonu, B., U. Ogbonna, G. Anyanwu, O. Emenalom, M. Uchegbu, E. Etuk and A. Udedibie. 2006. Evaluation of performance, organ characteristics and economic analysis of broiler finisher fed dried rumen digesta. J. Poult. Sci. 5:1116-1118.
Finnigan, T., Needham, L., & Abbott, C. (2017). Mycoprotein: A healthy new protein with a low environmental impact. In S. R. Nadathur, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable Protein Sources (Chapter 19, pp. 305–325). Academic Press.
García Martínez JB, Pearce JM, Throup J, Cates J, Lackner M and Denkenberger DC (2022) Methane Single Cell Protein: Potential to Secure a Global Protein Supply Against Catastrophic Food Shocks. Front. Bioeng. Biotechnol. 10:906704. doi: 10.3389/fbioe.2022.906704
Greife, H. A. (1984). Die Nukleinsäuren - ein gesundheitlicher Risikofaktor beim Einsatz von “Single-Cell Protein” in der Tierernährung? (Teil 1). Kraftfutter, 67, 412–414.
Grinstead, G. S., Tokach, M. D., Dritz, D. D., Goodband, R. D., & Nelssen, J. L. (2000). Effects of Spirulina platensis on growth performance of weanling pigs. Animal Feed Science and Technology, 83, 237–247.
Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., van Dijck, P. W. M., & Wyss, M. (2014). Yarrowia lipolytica: Safety assessment of an oleaginous yeast with great industrial potential. Critical Reviews in Microbiology, 40, 187–206.
Haldar, S., T. Ghosh and M. Bedford. 2011. Effects of yeast and yeast protein concentrate on production performance of broiler chickens exposed to heat stress and challenged with Salmonella enteritidis. J. Anim. Feed. Sci. Technol. 168:61-71.
Hanssen, J. T., & Farstad, L. (1980). Effects of feeding large amounts of “Pruteen” and “Toprina” on some biological parameters in growing finishing pigs. Acta Agriculturae Scandinavica, 30, 74–80.
Hatlen, B., Berge, G. M., Odom, J. M., Mundheim, H., & Ruyter, B. (2012). Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture, 364–365, 39–47.
Hellwing, A. L. F., Tauson, A. H., & Skrede, A. (2006). Effect of bacterial protein meal on protein and energy metabolism in growing chickens. Archives of Animal Nutrition, 60, 365–381.
Hellwing, A. L. F., Tauson, A. H., Ahlstrøm, Ø., & Skrede, A. (2005). Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas. Archives of Animal Nutrition, 59, 335–352.
Hellwing, A. L. F., Tauson, A. H., Skrede, A., & Kjos, N. P. (2007a). Bacterial protein meal: Effects on protein and energy metabolism in pigs. Animal, 1, 45–54.
Hellwing, A. L. F., Tauson, A. H., Skrede, A., Kjos, N. P., & Ahlstrøm, Ø. (2007b). Bacterial protein meal in diets for pigs and minks: Comparative studies on protein turnover rate and urinary excretion of purine base derivatives. Archives of Animal Nutrition, 61, 425–443.
Ikurior, S. A. (1995). Preservation of brewers yeast slurry by a simple on-farm adaptable technology and its effect on performance of weaner pigs. Animal Feed Science and Technology, 53, 353–358.
Jamal, P., Alam, M., & Salleh, N. (2008). Media optimization for bioproteins production from cheaper carbon source. Journal of Engineering Science and Technology, 3, 124–130.
Khot, M., Kamat, S., Zinjarde, S., Pant, A., Chopade, B., & RaviKumar, A. (2012). Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microbial Cell Factories, 11, 71.
Kuhad, R. C., Singh, A., Tripathi, K. K., Saxena, R. K., & Eriksson, K. E. L. (1997). Microorganisms as an alternative source of protein. Nutrition Reviews, 55(3), 65–75.
Kumar, P., Mehta, N., Abubakar, A. A., Verma, A. K., Kaka, U., Sharma, N., … Lorenzo, J. M. (2022). Potential Alternatives of Animal Proteins for Sustainability in the Food Sector. Food Reviews International, 39(8), 5703–5728. https://doi.org/10.1080/87559129.2022.2094403">https://doi.org/10.1080/87559129.2022.2094403.
Lackner, M., Drew, D., Bychkova, V., Mustakhimov, I., (2022a). Value-Added Products from Natural Gas Using Fermentation Processes: Fermentation of Natural Gas as Valorization Route, Part 1, in: Natural Gas—New Perspectives and Future Developments, Intech open, https://www.intechopen.com/chapters/81819, ISBN: 978-1-83962-748-4 (978-1-78985-504-3)
Lackner, M., Drew, D., Bychkova, V., Mustakhimov, I., (2022b). Value-Added Products from Natural Gas Using Fermentation Processes: Products from Natural Gas Using Fermentation Processes, Part 2, in: Natural Gas—New Perspectives and Future Developments, Intech open, 2022, https://www.intechopen.com/chapters/81870.pdf, ISBN: 978-1-83962-748-4 (978-1-78985-504-3)
Landell, F. L. D., Kronka, R. N., Thomaz, M. C., & Curtarelli, S. M. (1994). Utilization of centrifuged vinasse yeast (Saccharomyces cerevisiae) as a source of protein for swine from 10 to 30 kg liveweight. Revista da Sociedade Brasileira de Zootecnia, 23, 283–291.
Lee, A., You, L., Oh, S.-Y., Li, Z., Code, A., Zhu, C., Fisher-Heffernan, R., Regnault, T., De Lange, C., Huber, L.-A., et al. (2019). Health benefits of supplementing nursery pig diets with microalgae or fish oil. Animals, 9(2), 80.
Li YP, Ahmadi F, Kariman K, Lackner M. Recent advances and challenges in single cell protein (SCP) technologies for food and feed production. NPJ Sci Food. 2024 Sep 18;8(1):66. doi: 10.1038/s41538-024-00299-2.
Linder, T. (2019). Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Security, 11, 265–278.
Lombard, J. (2016). Characterisation of Wickerhamomyces anomalus and Kazachstania aerobia: Investigating fermentation kinetics and aroma production. Stellenbosch: Stellenbosch University.
Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water Scarcity and Future Challenges for Food Production. Water 2015, 7, 975-992. https://doi.org/10.3390/w7030975">https://doi.org/10.3390/w7030975.
McEvoy, L. A., Navarro, J. C., Hontoria, F., Amat, F., & Sargent, J. R. (1996). Two novel anemia enrichment diets containing polar lipid. Aquaculture, 144, 339–352.
Miura, Y., Kondo, K., Shimada, H., Saito, T., Nakamura, K., & Misawa, N. (1998). Production of lycopene by the food yeast, Candida utilis that does not naturally synthesize carotenoid. Biotechnology and Bioengineering, 58(2-3), 306–308.
Miyada, V. S., Lavorenti, A., Packer, I. U., & Menten, J. F. M. (1997). Dried yeast as a protein source for weanling pigs (10 to 28 kg BW). Revista Brasileira de Zootecnia, 26, 316–326.
Munawar, R., Irfan, M., Nadeem, M., et al. (2010). Biosynthesis of single cell biomass of Candida utilis by submerged fermentation. Pakistan Journal of Science, 1(62), 1–5.
Nassimi, A., et al. (2006). Analysis of combining ability in Brassica napus L. lines for yield associated traits. Pakistan Journal of Biological Sciences, 9, 2333–2337. 10.3923/pjbs.2006.2333.2337">http://dx.doi.org/10.3923/pjbs.2006.2333.2337.
Newport, M. J., & Keal, H. D. (1980). Artificial rearing of pigs. 10. Effect of replacing dried skim-milk by a single-cell protein (PRUTEEN) on performance and digestion of protein. British Journal of Nutrition, 44, 161–170.
Onyeaka, H, Anumudu, CK, Okpe, C, Okafor, A, Ihenetu, F, Miri, T, Odeyemi, OA & Anyogu, A 2022, ‘Single Cell Protein for Foods and Feeds: A Review of Trends’, The Open Microbiology Journal, vol. 16, no. 1, e187428582206160. https://doi.org/10.2174/18742858-v16-e2206160">https://doi.org/10.2174/18742858-v16-e2206160 Olvera-Novoa, M. A., Martínez-Palacios, C. A., & Olivera-Castillo, L. (2002). Utilization of torula yeast (Candida utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquaculture Nutrition, 8, 257–264.
Øverland, M., Kjos, N. P., & Skrede, A. (2004). Effect of bacterial protein meal grown on natural gas on growth performance and carcass traits of pigs. Italian Journal of Animal Science, 3, 323–336.
Øverland, M., Skrede, A., & Matre, T. (2001). Bacterial protein grown on natural gas as feed for pigs. Acta Agriculturae Scandinavica, Section A, Animal Science, 51, 97–106.
Paraskevopoulou, A., Athanasiadis, I., Kanellaki, M., Bekatorou, A., Blekas, G., & Kiosseoglou, V. (2003). Functional properties of single cell protein produced by kefir microflora. Food Research International, 36, 431–438.
Pelicia, V. C., J. R. Sartori, K. C. Zavarize, A. C. Pezzato, A. C. Stradiotti, P. C. Araujo, M. A. O. Mituo and L. A. Madeira. 2010. Effect of nucleotides on broiler performance and carcass yield. J. Poult. Sci. 12:31-34.
Pourelmi M.R., S. Seifi, A.R. Abdoullahi Kakroudi and R. Khoshbakht. 2018. Evaluation of Single Cell Protein as a Non‐Conventional Feedstuff in Broilers Feeding. Iranian Journal of Applied Animal Science 8(1), 317-324.
Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front Microbiol. 2017 Oct 13;8:2009. doi: 10.3389/fmicb.2017.02009.
Sardi, L., Martelli, G., Lambertini, L., Parisini, P., & Mordenti, A. (2006). Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livestock Science, 103, 95–103.
Sekoai, P.T.; Roets-Dlamini, Y.; O’Brien, F.; Ramchuran, S.; Chunilall, V. Valorization of Food Waste into Single-Cell Protein: An Innovative Technological Strategy for Sustainable Protein Production. Microorganisms 2024, 12, 166. https://doi.org/10.3390/microorganisms12010166">https://doi.org/10.3390/microorganisms12010166.
Shanon, D. W. F. 1992. The effect of different dietary levels on n-paraffin grown yeast on the growth and food intake of broiler chickens. J. Poult. Sci. 13:267-272.
Shareef A.M. and Al-dabbagh A.S.A. (2009). Effect of probiotic (Saccharomyces cerevisiae) on performance of broiler chicks. Iranian J. Vet. Sci. 23, 23-29.
Sheng, J., Chi, Z., Li, J., Gao, L., Gong, F., et al. (2007). Inulinase production by the marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the crude inulinase. Process Biochemistry, 42(5), 805–811. 10.1016/j.procbio.2007.01.016">http://dx.doi.org/10.1016/j.procbio.2007.01.016.
Silva, V., J. D. T. da Silva, K. Torres, D. de Faria Filho, F. H. Hada and V. B. de Moraes. 2009. Humoral immune response of broilers fed diets containing yeast extract and prebiotics in the prestarter phase and raised at different temperatures. J. Poult. Sci. 18:530-540.
Skrede, A., & Ahlstrøm, Ø. (2002). Bacterial protein produced on natural gas: A new potential feed ingredient for dogs evaluated using the blue fox as a model. Journal of Nutrition, 132, 1668S–1669S.
Skrede, A., Berge, G. M., Storebakken, T., Herstad, O., Aarstad, K. G., & Sundstøl, F. (1998). Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Animal Feed Science and Technology, 76, 103–116.
Skrede, A., Schøyen, H. F., Svihus, B., & Storebakken, T. (2003). The effect of bacterial protein grown on natural gas on growth performance and sensory quality of broiler chickens. Canadian Journal of Animal Science, 83, 229–237.
Storebakken, T., Baeverfjord, G., Skrede, A., Olli, J. J., & Berge, G. M. (2004). Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture, 241, 413–425.
Sun, T., Tolba, S. A., Magnuson, A. D., & Lei, X. G. (2022). Excessive Aurantiochytrium acetophilum docosahexaenoic acid supplementation decreases growth performance and breast muscle mass of broiler chickens. Algal Research, 63, 102648.
Wang, J. P., Kim, J. D., Kim, J. E., & Kim, I. H. (2013). Amino acid digestibility of single cell protein from Corynebacterium ammoniagenes in growing pigs. Animal Feed Science and Technology, 180, 111–114.
Wu, M. C., Wung, L. C., Liao, C. C., Kuo, C. C., & Chang, F. S. (1999). Antigenicity, digestive utilization, and growth performance of fermented soybean meal by weanling pigs. Taiwan Sugar, 46, 20–27.
Zhang, H. Y., Piao, X. S., Li, P., Yi, J. Q., Zhang, Q., Li, Q. Y., Liu, J. D., & Wang, G. Q. (2013). Effects of single cell protein replacing fish meal in diet on growth performance, nutrient digestibility and intestinal morphology in weaned pigs. Asian-Australasian Journal of Animal Sciences, 26(9), 1320–1328. doi: 10.5713/ajas.2013.13200.
Zhao, Y., Yu, B., Mao, X. B., He, J., Huang, Z. Q., Mao, Q., & Chen, D. W. (2012). Effect of dietary bacterial lysine byproduct meal supplementation on growth performance and excretion of purine base derivatives in growing-finishing pigs. Livestock Science, 149, 18–24.
Ziino, M., Lo Curto, R. B., Salvo, F., et al. (1999). Lipid composition of Geotrichum candidum single cell protein grown in continuous submerged culture. Bioresource Technology, 67(1), 7–11. 10.1016/S0960-8524(99)00102-9">http://dx.doi.org/10.1016/S0960-8524(99)00102-9.