M. Krause and G. De Vito, ‘Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition’, Nutrients, vol. 15, no. 19, p. 4279, Oct. 2023, doi: 10.3390/nu15194279.
B. Giri, S. Dey, T. Das, M. Sarkar, J. Banerjee, and S. K. Dash, ‘Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity’, Biomedicine & Pharmacotherapy, vol. 107, pp. 306–328, Nov. 2018, doi: 10.1016/j.biopha.2018.07.157.
M. A. B. Khan, M. J. Hashim, J. K. King, R. D. Govender, H. Mustafa, and J. Al Kaabi, ‘Epidemiology of Type 2 Diabetes – Global Burden of Disease and Forecasted Trends’, J Epidemiol Glob Health, vol. 10, no. 1, pp. 107–111, Mar. 2020, doi: 10.2991/jegh.k.191028.001.
S. Azeem, U. Khan, and A. Liaquat, ‘The increasing rate of diabetes in Pakistan: A silent killer’, Ann Med Surg (Lond), vol. 79, p. 103901, Jun. 2022, doi: 10.1016/j. amsu.2022.103901.
F. Bray et al., ‘Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries’, CA: A Cancer Journal for Clinicians, vol. 74, no. 3, pp. 229–263, 2024, doi: 10.3322/caac.21834.
Y. Lu et al., ‘Breast cancer risk for women with diabetes and the impact of metformin: A meta-analysis’, Cancer Medicine, vol. 12, no. 10, pp. 11703–11718, 2023, doi: 10.1002/cam4.5545.
P. Boyle et al., ‘Diabetes and breast cancer risk: a meta-analysis’, Br J Cancer, vol. 107, no. 9, pp. 1608–1617, Oct. 2012, doi: 10.1038/bjc.2012.414.
H. Chen, L. S. Cook, M.-T. C. Tang, D. A. Hill, C. L. Wiggins, and C. I. Li, ‘Relationship between Diabetes and Diabetes Medications and Risk of Different Molecular Subtypes of Breast Cancer’, Cancer Epidemiol Biomarkers Prev, vol. 28, no. 11, pp. 1802–1808, Nov. 2019, doi: 10.1158/1055-9965.EPI-19-0291.
I. A. Durrani, A. Bhatti, and P. John, ‘The prognostic outcome of “type 2 diabetes mellitus and breast cancer” association pivots on hypoxia-hyperglycemia axis’, Cancer Cell International, vol. 21, no. 1, p. 351, Jul. 2021, doi: 10.1186/ s12935-021-02040-5.
I. A. Durrani, A. Bhatti, and P. John, ‘Integrated bioinformatics analyses identifying potential biomarkers for type 2 diabetes mellitus and breast cancer: In SIK1-ness and health’, PLoS One, vol. 18, no. 8, p. e0289839, 2023, doi: 10.1371/journal.pone.0289839.
M. S. Sarkar, M. M. Mia, M. A. Amin, M. S. Hossain, and M. Z. Islam, ‘Bioinformatics and network biology approach to identifying type 2 diabetes genes and pathways that influence the progression of breast cancer’, Heliyon, vol. 9, no. 5, p. e16151, May 2023, doi: 10.1016/j.heliyon.2023.e16151.
A. Jagannath et al., ‘The multiple roles of salt-inducible kinases in regulating physiology’, Physiological Reviews, May 2023, doi: 10.1152/physrev.00023.2022.
Z. Sun, Q. Jiang, J. Li, and J. Guo, ‘The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis’, Sig Transduct Target Ther, vol. 5, no. 1, Art. no. 1, Aug. 2020, doi: 10.1038/s41392-020-00265-w.
Y. Zhang et al., ‘Role of salt inducible kinase 1 in high glucose-induced lipid accumulation in HepG2 cells and metformin intervention’, Life Sciences, vol. 173, pp. 107–115, Mar. 2017, doi: 10.1016/j.lfs.2017.02.001.
H. Cheng et al., ‘SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis’, Sci Signal, vol. 2, no. 80, p. ra35, Jul. 2009, doi: 10.1126/scisignal.2000369.
Á. Nagy and B. Győrffy, ‘muTarget: A platform linking gene expression changes and mutation status in solid tumors’, International Journal of Cancer, vol. 148, no. 2, pp. 502–511, 2021, doi: 10.1002/ijc.33283.
D. Szklarczyk et al., ‘The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest’, Nucleic Acids Res, vol. 51, no. D1, pp. D638–D646, Jan. 2023, doi: 10.1093/nar/gkac1000.
M. V. Kuleshov et al., ‘Enrichr: a comprehensive gene set enrichment analysis web server 2016 update’, Nucleic Acids Res, vol. 44, no. W1, pp. W90-97, Jul. 2016, doi: 10.1093/ nar/gkw377.
P. Shannon et al., ‘Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks’, Genome Res, vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi: 10.1101/gr.1239303.
B. T. Sherman et al., ‘DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)’, Nucleic Acids Res, vol. 50, no. W1, pp. W216–W221, Jul. 2022, doi: 10.1093/nar/gkac194.
B. Győrffy, ‘Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors’, Innovation (Camb), vol. 5, no. 3, p. 100625, May 2024, doi: 10.1016/j.xinn.2024.100625.
O. Menyhart, W. J. Kothalawala, and B. Győrffy, ‘A gene set enrichment analysis for the cancer hallmarks’, Journal of Pharmaceutical Analysis, p. 101065, Aug. 2024, doi: 10.1016/j.jpha.2024.101065.
N. Safari-Alighiarloo, M. Taghizadeh, M. Rezaei-Tavirani, B. Goliaei, and A. A. Peyvandi, ‘Protein-protein interaction networks (PPI) and complex diseases’, Gastroenterol Hepatol Bed Bench, vol. 7, no. 1, pp. 17–31, 2014.
N. Li, Z. Zhou, L. Zhang, H. Tang, X. Chen, and H. Zhou, ‘High expression of TTC21A predict poor prognosis of colorectal cancer and influence the immune infiltrating level’, Translational Cancer Research, vol. 11, no. 5, May 2022, doi: 10.21037/tcr-21-2674.
I. A. Durrani, P. John, A. Bhatti, and J. S. Khan, ‘Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes’, Heliyon, vol. 10, no. 17, p. e36650, Sep. 2024, doi: 10.1016/j.heliyon.2024. e36650.
X. Wang et al., ‘Identification and verification of four candidate biomarkers for early diagnosis of osteoarthritis by machine learning’, Heliyon, vol. 10, no. 15, p. e35121, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35121.
I. A. Durrani, A. Bhatti, and P. John, ‘Regulatory MicroRNAs in T2DM and Breast Cancer’, Processes, vol. 9, no. 5, Art. no. 5, May 2021, doi: 10.3390/pr9050819.
A. C. Improta-Caria et al., ‘Dysregulated microRNAs in type 2 diabetes and breast cancer: Potential associated molecular mechanisms’, World J Diabetes, vol. 15, no. 6, pp. 1187–1198, Jun. 2024, doi: 10.4239/wjd.v15.i6.1187.
J. Fu, S. Imani, M.-Y. Wu, and R.-C. Wu, ‘MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential’, Cancers, vol. 15, no. 19, Art. no. 19, Jan. 2023, doi: 10.3390/cancers15194723.
B. Győrffy, ‘Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer’, British Journal of Pharmacology, vol. 181, no. 3, pp. 362–374, 2024, doi: 10.1111/bph.16257.
Z. Sun et al., ‘AKT Blocks SIK1-Mediated Repression of STAT3 to Promote Breast Tumorigenesis’, Cancer Res, vol. 83, no. 8, pp. 1264–1279, Apr. 2023, doi: 10.1158/0008-5472.CAN-22-3407.
L. Ponnusamy and R. Manoharan, ‘Distinctive role of SIK1 and SIK3 isoforms in aerobic glycolysis and cell growth of breast cancer through the regulation of p53 and mTOR signaling pathways’, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1868, no. 5, p. 118975, Apr. 2021, doi: 10.1016/j.bbamcr.2021.118975.
K. Sakamoto, L. Bultot, and O. Göransson, ‘The Salt-Inducible Kinases: Emerging Metabolic Regulators’, Trends in Endocrinology & Metabolism, vol. 29, no. 12, pp. 827–840, Dec. 2018, doi: 10.1016/j.tem.2018.09.007.
K. Tian et al., ‘Unveiling the Role of Sik1 in Osteoblast Differentiation: Implications for Osteoarthritis’, Molecular and Cellular Biology, Oct. 2024, Accessed: Nov. 26, 2024. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/10985549.2024.2385633