References
- Ageing and health reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health#, 2022 (accessed 10 October 2022).
- D. Lorthanavanich, O. Komazawa, Introduction. Population Ageing in Thailand Long-term Care Model: Review of Population Ageing Practices and Policies, 2nd ed.; D. Lorthanavanich, O. Komazawa, Eds.; ERIA: Jakarta: ER-IA, Jakarta, 2021. Volume 2, pp. 1-11.
- Cardiovascular diseases (CVDs) reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), 2021 (accessed 12 October 2022).
- J. Li, J. Zhang, Y. Chen, L. Gao, X. Yan, M. Zhang, F. Wang, Y. He, W. Hu, H. Peng, Mean platelet volume modifies the contribution of homocysteine to cardiovascular disease: A real-world study. 33 (2023) 194-202. https://doi.org/10.1016/j.numecd.2022.10.013
- G. Paul, F.A. Sreyoshi, Role of homocysteine in the development of cardiovascular disease, Nutrition Journal. 14 (2015) 10. https://doi.org/10.1186/1475-2891-14-6.
- K. Borowczyk, J. Piechocka, R. Głowacki, I. Dhar, O. Midtun, G. S. Tell, P. M. Ueland, O. Nygård, H. Jakubowski, Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial, J Intern Med. 285 (2019) 232–244.
- L. Zizhen, H. Qianqian, Y. Hongbo, L. Jiajia, W. Xiaona, Z. Rui, H. Qiuyan, X. Yanchun, L. Guanxian, L. Bin, Y. Qiongqiong, Serum homocysteine is associated with tubular interstitial lesions at the early stage of IgA nephropathy, BMC Nephrology. 23 (2022). https://doi.org/10.1186/s12882-021-02632-3.
- P. Łukasz, W. Dorota, I. Magdalena, C. Agnieszka, S. Dorota, S. Janusz, Analysis of serum homocysteine in the laboratory practice - comparison of the direct chemiluminescence immunoassay and high performance liquid chromatography coupled with fluorescent detection, Biochem Med (Zagreb). 30 (2020) 030703.
- F.A. Sreyoshi, K. Santosh, G. Paul, Measurement of homocysteine: a historical perspective, J Clin Biochem Nutr. 65 (2019) 171–177. doi: 10.3164/jcbn.19-49.
- M. Safoora, F. Masoud, Electrocatalytic oxidation and determination of homocysteine at nanotubes-modified carbon paste electrode using dopamine as a mediator, J. Serb. Chem. Soc. 78 (2013) 1595–1607. doi: 10.2298/JSC1210 19022M.
- S. Yichi, F.H. Scott, G.L.K. Samantha, C.H. Ming, In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH), Journal of the American Chemical Society. 138 (2016) 7040-7047. https://doi.org/10.1021/jacs.6b01621.
- A. Assareeya, C. Benya, P. Chiravoot, Development of screen printed electrode using MWCNTs–TiO2 nano-composite as a low-cost device for uric acid detection in urine, Journal of Materials Science: Materials in Electronics. 30 (2019) 2403–2412. https://doi.org/10.1007/s10854-018-0513-z.
- N. Hui-Bog, R. S. Brillians, S. Yoon-Bo, Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode, Electrochimica Acta. 139 (2014) 315-322. https://doi.org/10.1016/j.electacta.2014.07.044.
- T.E.M. Nancy, V.A. Kumary, Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Electrochimica Acta. 133 (2014) 233-240. https://doi.org/10.1016/j.electacta.2014.04.027.
- R. Mahmoud, S. Mojtaba, R.R. Hamid, Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode, Journal of Electroanalytical Chemistry. 712 (2014) 19-24. https://doi.org/10.1016/j.jelechem.2013.08.027.
- B.F. Sekli, A. Civélas, V. Castagnola, A. Tsopela, L. Mazenq, P. Gros, J. Launay, P. Temple-Boyer, PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B. 214 (2015) 1-9. https://doi.org/10.1016/j.snb.2015.03.005.
- M. Fouladgar, S. Mohammadzadeh, H. Nayeri, Electrochemical determination of homocysteine using carbon nanotubes modified paste electrode and isoprenaline as a mediator, Russian Journal of Electrochemistry. 50, (2014) 981–988.
- M. Debasis, M. Mathankumar, T.R.K. Ramasamy, Development of the PANI/MWCNT nanocomposite-based fluorescent sensor for selective detection of aqueous ammonia, ACS Omega. 5 (2020) 8414−8422. https://dx.doi.org/10.1021/acsomega.9b02885.
- B.A. Shujahadeen, M. H. Hamsan, M. F. Z. Kadir, H. J. Woo, Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics, Advances in Polymer Technology, (2020) 10. https://doi.org/10.1155/2020/8586136.
- K. Divya, R. Sharrel, S. Jisha, A simple and effective method for extraction of high purity chitosan from shrimp shell waste, International Conference on Advanced Applied Science Environment Engineering. (2014) 140-145.
- X. S. Zhang, L. W. Yang, H. T. Liu, M. Zu, A novel high-content CNT-reinforced SiC matrix composite-fiber by precursor infiltration and pyrolysis process, RSC Adv. 7 (2017) 23334-23341. doi: 10.1039/C7RA03339G.
- A. Tamilselvan, K. Ganapathy, R. Ramasamy, B. Sengottuvelan, Antifouling behavior of chitosan adorned zinc oxide nanorods, RSC Adv. 6 (2016) 69206-69217. doi: 10.1039/c6ra13321e.
- V. Damini, C. Deepika, D.M. Maumita, R.R. Kumar, Y. Amit K, S. Pratima R, Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA, Journal of Applied Electrochemistry. 51 (2021) 447-462.
- N. Laura, M. A. Journot. Céline, G.L. Sandrine, Chitosan functionalization: covalent and non-covalent interactions and their characterization, Polymers. 13 (2021) 4118. https://doi.org/10.3390/polym13234118.
- C.D. Shaikat, A.A. Mohammad, U.R. Taslim, M.S. Zakir, M. Ashaduzzaman, S. Mithun, Sayed M. Shamsuddin, Preparation, characterization and performance evaluation of chitosan as an adsorbent for Remazol red, International Journal of Latest Research in Engineering and Technology. 2 (2016) 52-62.
- N.A. Rahman, S. Abu. Hanifah, N.N. Mobarak, M.S. Su’ait, A. Ahmad, L.K. Shyuan, L.T. Khoon, Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices. Europe PMC. 14 (2019).
- B. Hadi, Z. Reza, T.M. Masoud, T. Somayeh, A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles, Bioelectrochemistry. 134 (2020) 107497. https://doi.org/10.1016/j.bioelechem.2020.107497.
- Z. Reza, T. Somayeh, B. Hadi, T.M. Masoud, Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor based on gold nanostructure for detection of homocysteine, Biosensors 13 (2023) 244. https://doi.org/10.3390/bios13020244.
- H. Laleh, K. Alireza, A. Kourosh, R.N. Mehdi, A. Farhad, Determination of homocysteine using a dopaminefunctionalized graphene composite, Microchemical Journal. 165 (2021) 106124. https://doi.org/10.1016/j.microc.2021.106124.