Have a personal or library account? Click to login
Electrode surfaces based on multiwall carbon nanotubes-chitosan composites validated in the detection of homocysteine biomarkers for cardiovascular disease risk monitoring Cover

Electrode surfaces based on multiwall carbon nanotubes-chitosan composites validated in the detection of homocysteine biomarkers for cardiovascular disease risk monitoring

Open Access
|Jul 2023

References

  1. Ageing and health reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health#, 2022 (accessed 10 October 2022).
  2. D. Lorthanavanich, O. Komazawa, Introduction. Population Ageing in Thailand Long-term Care Model: Review of Population Ageing Practices and Policies, 2nd ed.; D. Lorthanavanich, O. Komazawa, Eds.; ERIA: Jakarta: ER-IA, Jakarta, 2021. Volume 2, pp. 1-11.
  3. Cardiovascular diseases (CVDs) reports for the WHO. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds), 2021 (accessed 12 October 2022).
  4. J. Li, J. Zhang, Y. Chen, L. Gao, X. Yan, M. Zhang, F. Wang, Y. He, W. Hu, H. Peng, Mean platelet volume modifies the contribution of homocysteine to cardiovascular disease: A real-world study. 33 (2023) 194-202. https://doi.org/10.1016/j.numecd.2022.10.013
  5. G. Paul, F.A. Sreyoshi, Role of homocysteine in the development of cardiovascular disease, Nutrition Journal. 14 (2015) 10. https://doi.org/10.1186/1475-2891-14-6.
  6. K. Borowczyk, J. Piechocka, R. Głowacki, I. Dhar, O. Midtun, G. S. Tell, P. M. Ueland, O. Nygård, H. Jakubowski, Urinary excretion of homocysteine thiolactone and the risk of acute myocardial infarction in coronary artery disease patients: the WENBIT trial, J Intern Med. 285 (2019) 232–244.
  7. L. Zizhen, H. Qianqian, Y. Hongbo, L. Jiajia, W. Xiaona, Z. Rui, H. Qiuyan, X. Yanchun, L. Guanxian, L. Bin, Y. Qiongqiong, Serum homocysteine is associated with tubular interstitial lesions at the early stage of IgA nephropathy, BMC Nephrology. 23 (2022). https://doi.org/10.1186/s12882-021-02632-3.
  8. P. Łukasz, W. Dorota, I. Magdalena, C. Agnieszka, S. Dorota, S. Janusz, Analysis of serum homocysteine in the laboratory practice - comparison of the direct chemiluminescence immunoassay and high performance liquid chromatography coupled with fluorescent detection, Biochem Med (Zagreb). 30 (2020) 030703.
  9. F.A. Sreyoshi, K. Santosh, G. Paul, Measurement of homocysteine: a historical perspective, J Clin Biochem Nutr. 65 (2019) 171–177. doi: 10.3164/jcbn.19-49.
  10. M. Safoora, F. Masoud, Electrocatalytic oxidation and determination of homocysteine at nanotubes-modified carbon paste electrode using dopamine as a mediator, J. Serb. Chem. Soc. 78 (2013) 1595–1607. doi: 10.2298/JSC1210 19022M.
  11. S. Yichi, F.H. Scott, G.L.K. Samantha, C.H. Ming, In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH), Journal of the American Chemical Society. 138 (2016) 7040-7047. https://doi.org/10.1021/jacs.6b01621.
  12. A. Assareeya, C. Benya, P. Chiravoot, Development of screen printed electrode using MWCNTs–TiO2 nano-composite as a low-cost device for uric acid detection in urine, Journal of Materials Science: Materials in Electronics. 30 (2019) 2403–2412. https://doi.org/10.1007/s10854-018-0513-z.
  13. N. Hui-Bog, R. S. Brillians, S. Yoon-Bo, Voltammetric analysis of anti-arthritis drug, ascorbic acid, tyrosine, and uric acid using a graphene decorated-functionalized conductive polymer electrode, Electrochimica Acta. 139 (2014) 315-322. https://doi.org/10.1016/j.electacta.2014.07.044.
  14. T.E.M. Nancy, V.A. Kumary, Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Electrochimica Acta. 133 (2014) 233-240. https://doi.org/10.1016/j.electacta.2014.04.027.
  15. R. Mahmoud, S. Mojtaba, R.R. Hamid, Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode, Journal of Electroanalytical Chemistry. 712 (2014) 19-24. https://doi.org/10.1016/j.jelechem.2013.08.027.
  16. B.F. Sekli, A. Civélas, V. Castagnola, A. Tsopela, L. Mazenq, P. Gros, J. Launay, P. Temple-Boyer, PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B. 214 (2015) 1-9. https://doi.org/10.1016/j.snb.2015.03.005.
  17. M. Fouladgar, S. Mohammadzadeh, H. Nayeri, Electrochemical determination of homocysteine using carbon nanotubes modified paste electrode and isoprenaline as a mediator, Russian Journal of Electrochemistry. 50, (2014) 981–988.
  18. M. Debasis, M. Mathankumar, T.R.K. Ramasamy, Development of the PANI/MWCNT nanocomposite-based fluorescent sensor for selective detection of aqueous ammonia, ACS Omega. 5 (2020) 8414−8422. https://dx.doi.org/10.1021/acsomega.9b02885.
  19. B.A. Shujahadeen, M. H. Hamsan, M. F. Z. Kadir, H. J. Woo, Design of Polymer Blends Based on Chitosan:POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics, Advances in Polymer Technology, (2020) 10. https://doi.org/10.1155/2020/8586136.
  20. K. Divya, R. Sharrel, S. Jisha, A simple and effective method for extraction of high purity chitosan from shrimp shell waste, International Conference on Advanced Applied Science Environment Engineering. (2014) 140-145.
  21. X. S. Zhang, L. W. Yang, H. T. Liu, M. Zu, A novel high-content CNT-reinforced SiC matrix composite-fiber by precursor infiltration and pyrolysis process, RSC Adv. 7 (2017) 23334-23341. doi: 10.1039/C7RA03339G.
  22. A. Tamilselvan, K. Ganapathy, R. Ramasamy, B. Sengottuvelan, Antifouling behavior of chitosan adorned zinc oxide nanorods, RSC Adv. 6 (2016) 69206-69217. doi: 10.1039/c6ra13321e.
  23. V. Damini, C. Deepika, D.M. Maumita, R.R. Kumar, Y. Amit K, S. Pratima R, Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA, Journal of Applied Electrochemistry. 51 (2021) 447-462.
  24. N. Laura, M. A. Journot. Céline, G.L. Sandrine, Chitosan functionalization: covalent and non-covalent interactions and their characterization, Polymers. 13 (2021) 4118. https://doi.org/10.3390/polym13234118.
  25. C.D. Shaikat, A.A. Mohammad, U.R. Taslim, M.S. Zakir, M. Ashaduzzaman, S. Mithun, Sayed M. Shamsuddin, Preparation, characterization and performance evaluation of chitosan as an adsorbent for Remazol red, International Journal of Latest Research in Engineering and Technology. 2 (2016) 52-62.
  26. N.A. Rahman, S. Abu. Hanifah, N.N. Mobarak, M.S. Su’ait, A. Ahmad, L.K. Shyuan, L.T. Khoon, Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices. Europe PMC. 14 (2019).
  27. B. Hadi, Z. Reza, T.M. Masoud, T. Somayeh, A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles, Bioelectrochemistry. 134 (2020) 107497. https://doi.org/10.1016/j.bioelechem.2020.107497.
  28. Z. Reza, T. Somayeh, B. Hadi, T.M. Masoud, Fabrication of a novel and ultrasensitive label-free electrochemical aptasensor based on gold nanostructure for detection of homocysteine, Biosensors 13 (2023) 244. https://doi.org/10.3390/bios13020244.
  29. H. Laleh, K. Alireza, A. Kourosh, R.N. Mehdi, A. Farhad, Determination of homocysteine using a dopaminefunctionalized graphene composite, Microchemical Journal. 165 (2021) 106124. https://doi.org/10.1016/j.microc.2021.106124.
Language: English
Page range: 144 - 154
Published on: Jul 16, 2023
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Suparerk Oonchit, Benya Cherdhirunkorn, Phuntila Tharabenjasin, Noel Pabalan, Kumpol Chintanavilas, Robert Marks, Yardnapar Parcharoen, Chiravoot Pechyen, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.