Have a personal or library account? Click to login
Silk Fibroin Hybrids for Biological Scaffolds with Adhesive Surface and Adaptability to the Target Tissue Change Cover

Silk Fibroin Hybrids for Biological Scaffolds with Adhesive Surface and Adaptability to the Target Tissue Change

Open Access
|Feb 2023

References

  1. 1. Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, Orlando G. Regenerative medicine, organ bioengineering and transplantation. British Journal of Surgery 2020; 107(7): 793–800.10.1002/bjs.1168632463143
  2. 2. Atala A. Engineering organs. Current Opinion in Biotechnology 2009; 20(5): 575–92.10.1016/j.copbio.2009.10.00319896823
  3. 3. Hamilton NJ, Kanani M, Roebuck DJ, et al. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. American Journal of transplantation 2015; 15(10): 2750–57.Zopf DA, Hollister SJ, Nelson ME. Bioresorbable airway splint created with a three-dimensional printer. New England Journal of Medicine 2013; 368(21):2043–45.10.1056/NEJMc120631923697530
  4. 4. Zopf DA, Hollister SJ, Nelson ME. Bioresorbable airway splint created with a three-dimensional printer. New England Journal of Medicine 2013; 368(21):2043–45.10.1056/NEJMc1206319
  5. 5. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 2011; 377(9772):1175–82.10.1016/S0140-6736(10)62354-9400588721388673
  6. 6. Shafiee A, Atala A. Tissue Engineering: Toward a New Era of Medicine. Annual Review of Medicine 2017; 68: 29-40.10.1146/annurev-med-102715-09233127732788
  7. 7. Terzic A, Pfenning MA, Gores GJ, Harper CM Jr. Regenerative Medicine Build-Out. Stem Cells Translational Medicine 2015; 4(12): 1373-79.10.5966/sctm.2015-0275467551326537392
  8. 8. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology 2014; 32: 773–85.10.1038/nbt.295825093879
  9. 9. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Materials Today 2011; 14(3): 88-90.10.1016/S1369-7021(11)70058-X
  10. 10. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15(5): 378-86.10.1016/j.semcancer.2005.05.00415975825
  11. 11. Friess W. Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 1998; 45(2):113-36.10.1016/S0939-6411(98)00017-4
  12. 12. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science 2010; 123(24): 4195-200.10.1242/jcs.023820299561221123617
  13. 13. Chiesa I, De Maria C, Ceccarini MR, Mussolin L, Coletta R, Morabito A, Tonin R, Calamai M, Morrone A, Beccari T, Valentini L. 3D Printing Silk-Based Bioresorbable Piezoelectric Self-Adhesive Holey Structures for In Vivo Monitoring on Soft Tissues. ACS Appl Mater Interf 2022; 14: 19253-64.10.1021/acsami.2c04078907383535438960
  14. 14. Von Recum AF, La Berge M. Educational goals for biomaterials science and engineering: perspective view. J Appl Biomater 1995; 6: 137–44.10.1002/jab.7700602097640441
  15. 15. Talbot EL, Berson A, Brown PS, Bain CD. Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Physical Review E 2012; 85: 061604.10.1103/PhysRevE.85.06160423005106
  16. 16. Hopp B, Smausz T, Szabó G, Kolozsvari L, Nogradi A, Kafetzopoulos D, Fotakis C. Femtosecond laser printing of living cells using absorbing film-assisted laser-induced forward transfer. Optical Engineering 2012; 51(1): 014302.10.1117/1.OE.51.1.014302
  17. 17. Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding strategies for tissue engineering and regenerative medicine applications materials 2019: 2-4.10.3390/ma12111824660096831195642
  18. 18. Wong T, McGrath JA, Navsaria H. The role of fibroblasts in tissue engineering and regeneration. British Journal of Dermatology 2007; 156: 1149-55.10.1111/j.1365-2133.2007.07914.x17535219
  19. 19. Costa-Almeida R, Soares R, Granja PL. Fibroblasts as maestros orchestrating tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine 2018; 12: 240-51.10.1002/term.240528109062
  20. 20. Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22: 7703.10.3390/ijms22147703830666934299322
  21. 21. Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacologica Sinica 2013; 34(1): 78-90.10.1038/aps.2012.107408649223064725
  22. 22. Lim D, Flames N, Collado L, Herrera DG. Investigating the use of primary adult subventricular zone neural precursor cells for neuronal replacement therapies. Brain Research Bulletin 2002; 57(6): 759-64.10.1016/S0361-9230(01)00768-712031272
  23. 23. Oliveira J., Pina S., Reis R., San Roman J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology 2018; 1058.10.1007/978-3-319-76735-2
  24. 24. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009; 10:1514–1524.10.3390/ijms10041514268063019468322
  25. 25. Valentini L, Ceccarini MR, Verdejo R, Tondi G, Beccari T. Stretchable, Bio-compatible, antioxidant and self-powering adhesives from soluble silk fibroin and vegetal polyphenols exfoliated graphite. Nanomaterials 2021; 11(9): 2352.10.3390/nano11092352847227934578666
  26. 26. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Richmond HLJ, Kaplan DL. Silk-based biomaterials. Biomaterials 2003; 24(3): 401-16.10.1016/S0142-9612(02)00353-8
  27. 27. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Del Rev 2013; 65(4): 457-70.10.1016/j.addr.2012.09.04323137786
  28. 28. Bai H., Chun L., Gaoquan S. Functional composite materials based on chemically converted graphene. Advanced Materials 2011; 23: 1089-115.10.1002/adma.20100375321360763
  29. 29. Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Interfacing live cells with nanocarbon substrates. Langmuir 2010; 26(4): 2244–2247.10.1021/la904874320099791
  30. 30. Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int. J. Nanomed. 2019; 14: 5753–578310.2147/IJN.S192779666251631413573
  31. 31. A. Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 2020; 580: 119226.10.1016/j.ijpharm.2020.11922632179151
  32. 32. Chiesa I, De Maria C, Tonin R, Ripanti F, Ceccarini MR, Salvatori C, Mussolin L, Paciaroni A, Petrillo C, Cesprini E, Feo F, Calamai M, Morrone A, Morabito A, Beccari T, Valentini L. Biocompatible and printable ionotronic sensing materials based on silk fibroin and soluble plant-derived polyphenols. ACS Omega 2022; 7: 43729-37.10.1021/acsomega.2c04729973045636506141
Language: English
Page range: 75 - 86
Published on: Feb 1, 2023
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 S. Ciabattini, V. Raggi, L. Valentini, A. Morabito, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.