Have a personal or library account? Click to login
Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules Cover

Development of a database of RNA helicase inhibitors (VHIMDB) of pathogenic viruses and in silico screening for the potential drug molecules

By: R Satpathy and  S Acharya  
Open Access
|Jul 2022

References

  1. 1. Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNAviruses candidate agents for the next global pandemic? A review. ILAR J. 2017; 58:343-58.10.1093/ilar/ilx026710857128985316
  2. 2. Enard D, Petrov DA. Ancient RNA virus epidemics through the lens of recent adaptation in human genomes. Philos Trans R Soc Lond B Biol Sci. 2020; 375:20190575.10.1098/rstb.2019.0575770280333012231
  3. 3. Duffy S. Why are RNA virus mutation rates so damn high? PLOS Biol. 2018;16: e3000003.10.1371/journal.pbio.3000003610725330102691
  4. 4. Zhao Z, Bourne PE. Structural insights into the binding modes of viral RNA-dependent RNA polymerases using a function-site interaction fingerprint method for RNA virus drug discovery. J Proteome Res. 2020; 19:4698-705.10.1021/acs.jproteome.0c00623764097632946692
  5. 5. Yashvardhini N, Jha DK, Bhattacharya S. Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target. Arch Microbiol. 2021; 203:5463-73.10.1007/s00203-021-02527-9837412134410443
  6. 6. Frick DN. Helicases as antiviral drug targets. Drug News Perspect. 2003; 16:355-62.10.1358/dnp.2003.16.6.829307357168312973446
  7. 7. Shyr ZA, Gorshkov K, Chen CZ, Zheng W. Drug discovery strategies for SARS-CoV-2. J Pharmacol Exp Ther. 2020; 375:127-38.10.1124/jpet.120.000123756930632723801
  8. 8. Jankowsky E. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 2011; 36:19-29.10.1016/j.tibs.2010.07.008301721220813532
  9. 9. Briguglio I, Piras S, Corona P, Carta A. Inhibition of RNA helicases of ssRNA+ virus belonging to Flaviviridae, Coronaviridae and Picornaviridae families. Int J Med Chem. 2011;2011:213135.10.1155/2011/213135497065027516903
  10. 10. Halim SA, Khan S, Khan A, Wadood A, Mabood F, Hussain J, Et al. Targeting Dengue Virus NS-3 Helicase by Ligand based Pharmacophore Modeling and Structure based Virtual Screening. Front Chem. 2017; 5:88.10.3389/fchem.2017.00088567165029164104
  11. 11. Kadaré G, Haenni AL. Virus-encoded RNA helicases. J Virol. 1997; 71:2583-90.10.1128/jvi.71.4.2583-2590.19971913789060609
  12. 12. El-Sayed AF, Mohammed AT, Hamed W, Abdelmalek S. Repurposing of available antiviral drugs against SARSCoV-2 by targeting crucial replication machinery proteins: a molecular docking study. Egypt Pharm J. 2021;20 :371-92.
  13. 13. Faheem M, Singh VK, Srivastava A. Recent insights of SARS-CoV-2 potential inhibitors. Biomed Biotechnol Res J (BBRJ). 2022; 6:21-32.10.4103/bbrj.bbrj_229_21
  14. 14. Satpathy R. In silico modeling and docking study of potential helicase (nonstructural proteins) inhibitors of novel coronavirus 2019 (severe acute respiratory syndrome coronavirus 2). Biomed Biotechnol Res J. 2020;4:330-6.10.4103/bbrj.bbrj_149_20
  15. 15. Shu T, Huang M, Wu D, Ren Y, Zhang X, Han Y et al. SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin. 2020; 35:321-9.10.1007/s12250-020-00242-1727183132500504
  16. 16. White MA, Lin W, Cheng X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J Phys Chem Lett. 2020; 11:9144-51.10.1021/acs.jpclett.0c02421757130633052685
  17. 17. Abidi SH, Almansour NM, Amerzhanov D, Allemailem KS, Rafaqat W, Ibrahim MAA et al. Repurposing potential of posaconazole and grazoprevir as inhibitors of SARSCoV-2 helicase. Sci Rep. 2021;11:1:10290.10.1038/s41598-021-89724-0811968933986405
  18. 18. Kwong AD, Rao BG, Jeang KT. Viral and cellular RNA helicases as antiviral targets. Nat Rev Drug Discov. 2005; 4:845-53.10.1038/nrd1853709719116184083
  19. 19. Lou Z, Sun Y, Rao Z. Current progress in antiviral strategies. Trends Pharmacol Sci. 2014; 35:86-102.10.1016/j.tips.2013.11.006711280424439476
  20. 20. Hanson AM, Hernandez JJ, Shadrick WR, Frick DN. Identification and analysis of inhibitors targeting the hepatitis C virus NS3 helicase. Methods Enzymology2012; 511:463-8310.1016/B978-0-12-396546-2.00021-8357168222713333
  21. 21. Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen. 2013; 18:761-81.10.1177/1087057113482586442723323536547
  22. 22. Parvez MK, Subbarao N. Molecular analysis and modeling of hepatitis E virus helicase and identification of novel inhibitors by virtual screening. Biomed Res Int. 2018;2018:5753804.
  23. 23. Pattnaik GP, Chakraborty H. Entry inhibitors: efficient means to block viral infection. J Membr Biol. 2020; 253:425-44.10.1007/s00232-020-00136-z745644732862236
  24. 24. Satpathy R, Konkimalla VSB, Ratha J. Dehalobase: a database of dehalogenase and other allied enzymes. Int Jrnl Appl Res Info Tech and Comp. 2015; 6:33-7.10.5958/0975-8089.2015.00004.4
  25. 25. Letkowski J. Doing database design with MySQL. J Technol Res. 2015; 6:1.
  26. 26. Welling L, Thomson L. PHP and MySQL Web development. Sams Publishing; 2003.
  27. 27. Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today Technol. 2004; 1:337-41.10.1016/j.ddtec.2004.11.00724981612
  28. 28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46: W257-63.10.1093/nar/gky318603101129718510
  29. 29. Satpathy R. Application of molecular docking methods on endocrine disrupting chemicals: a review. J Appl Biotechnol Rep. 2020; 7:74-80.
  30. 30. Fan J, Fu A, Zhang L. Progress in molecular docking. Quant Biol. 2019; 7:83-9.10.1007/s40484-019-0172-y
  31. 31. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem. 2010; 31:455-61.
  32. 32. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49: W530-4.10.1093/nar/gkab294826272033950214
  33. 33. Newman JA, Douangamath A, Yadzani S, Yosaatmadja Y, Aimon A, Brandão-Neto J et al. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat Commun. 2021; 12:484810.1038/s41467-021-25166-6835806134381037
  34. 34. Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J et al. Delicate structural coordination of the severe acute respiratory syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019; 47:6538-50.10.1093/nar/gkz409661480231131400
  35. 35. Hao W, Wojdyla JA, Zhao R, Han R, Das R, Zlatev I et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLOS Pathog. 2017;13:e1006474.10.1371/journal.ppat.1006474550169428651017
  36. 36. Lamos EM, Younk LM, Davis SN. Canagliflozin, an inhibitor of sodium–glucose cotransporter 2, for the treatment of type 2 diabetes mellitus. Expert Opin Drug MetabToxicol. 2013; 9:763-75.10.1517/17425255.2013.79128223590413
  37. 37. Das L, Dutta P. SGLT2 inhibition and COVID-19: the road not taken. Eur J Clin Investig. 2020:e13339.10.1111/eci.13339740451532648935
  38. 38. Koufakis T, Pavlidis AN, Metallidis S, Kotsa K. Sodium-glucose co-transporter 2 inhibitors in COVID-19: meeting at the crossroads between heart, diabetes and infectious diseases. Int J Clin Pharm. 2021;43:764-7.10.1007/s11096-021-01256-9794252033751323
  39. 39. Cannalire R, Cerchia C, Beccari AR, Di Leva FS, Summa V. Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities. J Med Chem. 2020;65:2716-46.10.1021/acs.jmedchem.0c01140768804933186044
  40. 40. Khater I, Nassar A. In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease. Biochem Biophys Rep. 2021;27:101032.10.1016/j.bbrep.2021.101032817349534099985
  41. 41. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766-88.10.1016/j.apsb.2020.02.008710255032292689
  42. 42. Lau EY, Negrete OA, Bennett WFD, Bennion BJ, Borucki M, Bourguet F et al. Discovery of small-molecule inhibitors of SARS-CoV-2 proteins using a computational and experimental pipeline. Front Mol Biosci. 2021;8:678701.10.3389/fmolb.2021.678701831500434327214
  43. 43. SOYLU M, ÖZBEK EN, YetİkAnacak GY. Drug repur-posing in the treatment of COVID-19. Bezmiâlem Sci. 2020;8:84-93.10.14235/bas.galenos.2020.4925
  44. 44. Muhammed Y. Molecular targets for COVID-19 drug development: enlightening Nigerians about the pandemic and future treatment. Biosaf Health. 2020;2:210-6.10.1016/j.bsheal.2020.07.002734365032838282
  45. 45. Delre P, Caporuscio F, Saviano M, Mangiatordi GF. Repur-posing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease. Front Chem. 2020;8:594009.10.3389/fchem.2020.594009770129033304884
  46. 46. Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry. 2022.10.1016/j.bpc.2022.106824909507135728510
  47. 47. Khan AA, Dutta T, Mondal P, Mandal M, Chowdhury SK, Ahmed M et al. Novel coronavirus Disease (COVID-19): an extensive study on evolution, global health, drug targets and vaccines. Int J Clin Virol. 2021;5:054-69.10.29328/journal.ijcv.1001036
  48. 48. Unni S, Aouti S, Thiyagarajan S, Padmanabhan B. Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. J Biosci. 2020;45:1-20.10.1007/s12038-020-00102-w
  49. 49. Fallah MS, Bayati M, Najafi A, Behmard E, Javad S. Molecular docking investigation of antiviral herbal compounds as potential inhibitors of sars-cov-2 spike receptor. Biointerface res. J Appl Chem. 2021;11:12916-24.
  50. 50. Ugwueze CV, Ezeokpo BC, Nnolim BI, Agim EA, Anikpo NC, Onyekachi KE. COVID-19 and diabetes mellitus: the link and clinical implications. Dubai Diabetes Endocrinol J. 2020;26:69-77.10.1159/000511354
Language: English
Page range: 116 - 125
Published on: Jul 18, 2022
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 R Satpathy, S Acharya, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.