References
- WHO Coronavirus Disease (COVID-19) Dashboard. [Cited 2021 May 09]. Available from: https://covid19.who.int/
- Ouassou H, Kharchoufa L, Bouhrim M, Daoudi NE, Imtara H, Bencheikh N, et al. The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention. J Immunol Res. 2020;2020:7.
- The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19)-China. China CDC Weekly. 2020;2:113–122.
- Woo PCY, Huang Y, Lau SKP, Yuen K-Y. Coronavirus Genomics and Bioinformatics Analysis. Viruses. 2010;2(8):1804–1820.
- Xue X, Yu H, Yang H, Xue F, Wu Z, Shen W, et al. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. J Virol. 2007;82(5), 2515–2527.
- Motiwale M, Yadav NS, Kumar S, Kushwaha T, Choudhir G, Sharma S, et al. Finding potent inhibitors for COVID-19 main protease (Mpro): an in silico approach using SARS-CoV-3CL protease inhibitors for combating CORONA. J Biomol Struct Dyn. 2020;1-12.
- Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020; 368(6489):409-412.
- Yang H, Xie W, Xue X, Yang K, Ma J, Liang W, et al. Correction: Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biol. 2005;3(11):e428.
- Sacco MD, Ma C, Lagarias P, Gao A, Townsend JA, Meng X, et al. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci Adv. 2020;6(50):eabe0751.
- Ul Qamar M, Alqahtani S, Alamri MA, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313-319.
- Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs. Science. 2003;300(5626):1763–1767.
- Kumar Y, Singh H, Patel CN. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J Infect Public Health. 2020;13(9):1210-1223.
- Cvetnic Z, Vladimir-Knezevic S. Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm. 2004;54:243–250.
- Shahnawaz A, Rattanpal HS, Singh G. Diversity assessment of grapefruit (citrus × paradisi) and tangelo (citrus × tangelo) under indian conditions using physico-chemical parameters and ssr markers. App Ecol Environ Res. 2018;16(5):5343-5358.
- Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe. [Cited 2021 Feb 27]. Available from: https://www.fda.gov/media/99981/download
- Cardellina JH. Grapefruit Seed Extract Laboratory Guidance Document. American Botanical Council. 2017. [Cited 2021 Feb 27]. Available from: http://cms.herbalgram.org/BAP/LGD/ABC-LGDs-GFSE-CC-05092017-v5.pdf
- Komura M, Suzuki M, Sangsriratanakul N, Ito M, Takahashi S, Alam MS, et al. Inhibitory effect of grapefruit seed extract (GSE) on avian pathogens. J Vet Med Sci. 2019;81(3):466-472.
- Go CC, Pandav K, Sanchez-Gonzalez MA, Ferrer G. Potential Role of Xylitol Plus Grapefruit Seed Extract Nasal Spray Solution in COVID-19: Case Series. Cureus. 2020;12(11):e11315.
- Shalayel M, Al-Mazaideh G, Aladaileh SH, Al-Swailmi F, Al-Thiabat M. Vitamin D is a potential inhibitor of COVID-19: In silico molecular docking to the binding site of SARS-CoV-2 endoribonuclease Nsp15. Pak J Pharm Sci. 2020;33(5):2179-2186.
- Teli DM, Shah MB, Chhabria MT. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front Mol Biosci. 2021;7:429.
- Sharma S, Deep S. In-Silico Drug Repurposing for Targeting SARS-CoV-2 Mpro. ChemRxiv. 2020; Preprint. Available from: https://doi.org/10.26434/chemrxiv.12210845.v1
- Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol. 2021; 9(1):10.
- Ibrahim MAA, Abdelrahman AHM, Allemailem KS, Almatroudi A, Moustafa MF, Hegazy MEF. In Silico Evaluation of Prospective Anti-COVID-19 Drug Candidates as Potential SARS-CoV-2 Main Protease Inhibitors. Protein J. 2021.
- Kumar Y, Singh H, Patel CN. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J Infect Public Health. 2020;13(9).
- Garibaldi BT, Wang K, Robinson ML, et al. Comparison of Time to Clinical Improvement With vs Without Remdesivir Treatment in Hospitalized Patients With COVID-19. JAMA Netw Open. 2021;4(3):e213071.
- Lai C-C, Chen C-H, Wang C-Y, Chen, Ya-Hui Wang K-H, Hsueh P-R. Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. J Antimi-crob Chemother. 2021;dkab093.
- RCSB Protein Data Bank. [Cited 2021 Feb 27]. Available from: https://www.rcsb.org/
- PubChem. [Cited 2021 Feb 27]. Available from https://pubchem.ncbi.nlm.nih.gov/
- Online SMILES Translator and Structure File Generator. [Cited 2021 Feb 27]. Available from: https://cactus.nci.nih.gov/translate/
- MGLTools. [Cited 2021 Feb 27]. Available from http://mgltools.scripps.edu/downloads
- Trott O, Olson, A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-461.
- Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Nat Prod Bio-prospect. 2020a;10:297–306.
- The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. [Cited 2021 Feb 27]. Available from https://pymol.org/2/
- Narkhede RR, Cheke RS, Ambhore JP, Shinde SD. The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. EJMO. 2020b;4(3):185–195.
- Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Targeted Ther. 2020;5:237.
- Iacob S, Iacob DG. SARS-CoV-2 Treatment Approaches: Numerous Options, No Certainty for a Versatile Virus. Front Pharmacol. 2020;11:1224.
- Afriza D, Suriyah WH, Ichwan SJA. In silico analysis of molecular interactions between the antiapoptotic protein survivin and dentatin, nordentatin, andquercetin. J Phys Conf Ser. 2018;1073(3):032001.
- Saxena A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J Biosci. 2020;45(1):87.
- Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MA, et al. COVID-19: Drug Targets and Potential Treatments. J Med Chem. 2020;63(21):12359–12386.
- Vijayakumar BG, Ramesh D, Joji A, Prakasan JJ, Kannan T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur J Pharmacol. 2020;886:173448.
- Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLOS ONE. 2020;15(10):e0240653.
- Vardhan S, Sahoo SK. In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Comput Biol Med. 2020;124:103936.
- Gualdani R, Cavalluzzi MM, Lentini G, Habtemariam S. The Chemistry and Pharmacology of Citrus Limonoids. Molecules. 2016;21(11):1530.