Have a personal or library account? Click to login
Defense manifestations of enzymatic and non-enzymatic antioxidants in Ricinus communis L. exposed to lead in hydroponics Cover

Defense manifestations of enzymatic and non-enzymatic antioxidants in Ricinus communis L. exposed to lead in hydroponics

Open Access
|Jul 2019

References

  1. Gupta DK, Huang HG, Corpas FJ. Lead tolerance in plants: strategies for phytoremediation. Environ. Sci. Pollut. Res., 2013; 20: 2150–2161.10.1007/s11356-013-1485-4
  2. Obiora SC, Chukwu A, Toteu SF, Davies TC. Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, south-eastern Nigeria. J. Geol. Soc., 2016; 87: 453–462.
  3. Kumar A and Prasad MNV. Plant-lead interactions: Transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol. Environ. Saf. 2018; 166, 401–418.3029032710.1016/j.ecoenv.2018.09.113
  4. Mroczek-Zdyrska M, Strubińska J, Hanaka A. Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L minor plants grown under phosphorus-deficient conditions. J. Plant Growth Regul., 2016: 36; 186–199.
  5. Sorrentino MC, Capozzi F, Giordano S, Spagnuolo V. Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre an evaluation by ISSR markers. Chemosphere, 2017; 181: 208–215.10.1016/j.chemosphere.2017.04.06528441611
  6. Ashraf U and Tang X. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere, 2017; 176: 141–155. doi:10.1016/j.chemosphere.2017.02.103.2826477510.1016/j.chemosphere.2017.02.103
  7. Piwowarczyk B, Tokarz K, Muszyńska E, Makowski W, Jędrzejczyk R, Gajewski Z, Hanus-Fajerska E. The acclimatization strategies of kidney vetch Anthyllis vulneraria L.) to Pb toxicity. Environ. Sci. Pollut. Res., 2018; 25: 19739–19752.10.1007/s11356-018-2197-6
  8. Morel JL, Mench M, Guckert A. Measurement of Pb, Cu and Cd Binding with Mucilage Exudates from Maize Zea mays L.) Roots, Biol. Fertil. Soils, 1986; 2: 29–34.10.1007/BF00638958
  9. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity and detoxification in plants. Rev Environ Conta Toxicol, 2011; 213: 113–136.
  10. Kaur G, Singh HP, Batish DR, Kohli RK. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+ Protoplasma, 2012; 249(4): 1091–1100. doi:10.1007/s00709-011-0353-72213454310.1007/s00709-011-0353-7
  11. Mahdavian K, Ghaderian SM, Schat H. Pb accumulation, Pb tolerance, antioxidants, thiols, and organic acids in metallicolous and non-metallicolous Peganum harmala L. under Pb exposure. Environ Exper Bot, 2016; 126: 21–31.
  12. López-Orenes A, Dias MC, Ferrer MÁ, Calderón A, Moutinho-Pereira J, Correia C, Santos C. Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environ. Sci. Pollut. Res., 2018; 25: 1319–1330.10.1007/s11356-017-0505-1
  13. Saleem M, Asghar HN, Zahir ZA, Shahid M. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere, 2018; 195: 606–614.10.1016/j.chemosphere.2017.12.11729278850
  14. Sidhu GPS, Singh HP, Batish DR, Kohli RK. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus Plant Physiol. Biochem., 2016; 105: 290–296.2721408510.1016/j.plaphy.2016.05.019
  15. Khan MM, Islam E, Irem S, Akhtar K, Ashraf MY, Iqbal J, Liu D. Pb-induced phytotoxicity in para grass Brachiaria mutica and castor bean Ricinus communis L.): antioxidant and ultrastructural studies. Chemosphere, 2018; 200: 257–265.10.1016/j.chemosphere.2018.02.101
  16. Maldonado-Magana A, Favela-Torres E, Rivera-Cabrera F, Volke-Sepulveda TL. Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil, 2011; 339(1-2): 377–389.10.1007/s11104-010-0589-6
  17. Kumar A, Majeti NVP. Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms. Environ. Sci. Pollut. Res., 2014; 21: 8750–8764.
  18. Kohli SK, Handa N, Bali S, Arora S, Sharma A, Kaur R, Bhardwaj R. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol. Environ. Saf, 2018; 147: 382–393.2888131710.1016/j.ecoenv.2017.08.051
  19. Zhou F, Wang J, Yang N. Growth responses, antioxidant enzyme activities and lead accumulation of Sophora japonica and Platycladus orientalis seedlings under Pb and water stress. Plant Growth Regul, 2015; 75: 383–389.10.1007/s10725-014-9927-7
  20. Rodriguez E, da Conceição Santos M, Azevedo R, Correia C, Moutinho-Pereira J, Ferreira de Oliveira JMP, Dias MC. Photosyn-thesis light-independent reactions are sensitive biomarkers to monitor lead phytotoxicity in a Pb-tolerant Pisum sativum cultivar. Environ. Sci. Pollut. Res., 2015; 22: 574–585.10.1007/s11356-014-3375-9
  21. Marques MC, Nascimento CWA, da Silva AJ, Gouviea-Neto AS. Tolerance of an energy crop Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. S Afr J Bot, 2017; 112: 275–282.10.1016/j.sajb.2017.06.009
  22. Kiran BR, Prasad MNV. Ricinus communis L. (Castor bean), a potential multi-purpose environ-mental crop for improved and integrated phyto-remediation. The Euro Biotech J, 2017a; 1(2): 1–16.
  23. Olivares AR, Carrillo-González R, González-Chávez MCA, Hernández RMS. Potential of castor bean Ricinus communis L.) for phytoremediation of mine tailings and oil production. J. Environ. Manag., 2013; 114: 316–323.
  24. Kushwaha A, Hans N, Kumar S, Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf., 2018;147: 1035–1045.10.1016/j.ecoenv.2017.09.04929976006
  25. Silva WR, da Silva FBV, Arauj PRM, do Nascimento. Assessing human health risks and strategies for phytoremediation in soils contaminated with As, Cd, Pb, and Zn by slag disposal. Ecotoxicol. Environ. Saf., 2017; 144: 522–530.2867586610.1016/j.ecoenv.2017.06.068
  26. Wei R, Guo Q, Yu G, Kong J, Okoli CP. Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. Environ. Pol., 2018; 236: 634–644.10.1016/j.envpol.2018.01.103
  27. Yazdi M, Kolahi M, Kazemi EM, Barnaby AGB. Study of the contamination rate and change in growth features of lettuce Lactuca sativa Linn.) in response to cadmium and a survey of its phytochelatin synthase gene. Ecotoxicol. Environ. Saf., 2019; 180: 295–308.10.1016/j.ecoenv.2019.04.071
  28. Huang G, Guo G, Yao S, Zhang N, Hu H. Organic Acids, Amino acids compositions in the root exudates and Cu-accumulation in castor Ricinus communis L.) under Cu Stress. Int J Phytoremediation, 2016; 18(1): 33–40.doi:10.1080/15226514.2015.1058333.10.1080/15226514.2015.1058333
  29. Celik O and Akdas EY. Tissue specific transcriptional regulation of seven heavy metal stress-responsive miRNAs and their putative targets in nickel indicator castor bean R. communis L.) plants. Ecotoxicol. Environ. Saf., 2019; 170: 682–690.10.1016/j.ecoenv.2018.12.006
  30. Yang J, Yang J, Huang J. Role of co-planting and chitosan in phytoextraction of As and heavy metals by Pteris vittata and castor bean – A field case. Ecol. Eng., 2017; 109: 35–40.10.1016/j.ecoleng.2017.09.001
  31. Kiran BR, Prasad MNV. Responses of Ricinus communis L. (Castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk J Agr Food Sci, 2017b; 31(1): 73–80.
  32. Boda RK, Prasad MNV, Suthari S. Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in peri-urban Greater Hyderabad: remarks on seed oil. Environ Sci Pollut Res, 2017; 24: 1–10. doi 10.1007/s11356-017-9654-5
  33. Hoagland DR and Arnon DI The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ, 1950; 347: 1–32. doi:citeulike-article-id:9455435.
  34. Singleton VL, Orthofer R, Larnuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 1999; 299: 152–178.10.1016/S0076-6879(99)99017-1
  35. Zhishen J, Mengcheng T, Jianming W. The determination of flavanoids content in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999; 64: 555–559.10.1016/S0308-8146(98)00102-2
  36. Valentovic P, Luxova M, Kolarovic L, Gasparikova O. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ, 2006; 52: 186-191.
  37. Velikova V, Yordanov I, Edreva A. Oxidative stress and some anti-oxidant systems in acid rain-treated bean plants. Plant Sci, 2000; 151(1): 59–66. doi:10.1016/S0168-9452(99)00197-110.1016/S0168-9452(99)00197-1
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the Folin Phenol Reagent. The Journal of Biological Chemistry, 1951; 193(1): 265–275.14907713
  39. Beauchamp C and Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem., 1971; 44(1): 276–287.10.1016/0003-2697(71)90370-84943714
  40. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126.672766010.1016/S0076-6879(84)05016-3
  41. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981; 22(5): 867–880.
  42. Putter J. Peroxidase. In: Methods of enzymatic assays. (Ed.H.U. Bergymer), Verlag Chemie, Weinhan, 1974; 685-690.
  43. Drazkiewicz M, Skorzynska-Polit E, Krupa Z. Response of ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L.). Plant Sci, 2003; 164(2): 195–20210.1016/S0168-9452(02)00383-7
  44. Hissin PJ and Hiff R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem, 1976; 74(1): 214–226.10.1016/0003-2697(76)90326-2962076
  45. Jiang M and Zhang J. Effect of abscissic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001; 42(11): 1265–1273.10.1093/pcp/pce162
  46. Liu CW, Sung Y, Chen BC, Lai HY. Effects of nitrogen fertilizers on the growth and nitrate content of Lettuce Lactuca sativa L.). Int. J. Environ. Res. Public Health. 2014; 11: 4427-4440.2475889610.3390/ijerph110404427
  47. Guha A, Sengupta D, Reddy AR. Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J. Photochem. Photobiol., 2013; 119: 71–83.10.1016/j.jphotobiol.2012.12.006
  48. Kumar A and Prasad MNV. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica, 2015; 53 (1): 66–71.10.1007/s11099-015-0091-8
  49. Boguszewska D, Zagdanska B. ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions, Oxidative Stress – Molecular Mechanisms and Biological Effects, Dr. Volodymyr Lushchak (Ed.), Rijeka, Croatia: In Tech, 2012; 341-362. DOI: 10.5772/33589
  50. Bhattacharjee S. Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci, 2005; 89(7): 1113–1121.
  51. Posmyk MM, Kontek R, Janas KM. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf, 2009; 72(2): 596–6021880157310.1016/j.ecoenv.2008.04.024
  52. Shemet SA, Fedenko VS. Accumulation of phenolic compounds in maize seedlings under toxic Cd influence. Physiol Biochem Cultiv Plants, 2005; 37: 505–512.
  53. Sakihama Y, Cohen MF, Grace SC, Yamasaki H. Plant phenolic antioxidant and pro-oxidant activities: phenolics induced oxidative damage mediated by metals in plants. Toxicology, 2002; 177(1): 67–80.10.1016/S0300-483X(02)00196-812126796
  54. Kumar A, Prasad MNV, Achary VMM, Panda BB. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res, 2013; 20(7): 4551–4561.10.1007/s11356-012-1354-6
  55. Kabata-Pendias A. Trace elements in soils and plants. 4th edn. CRC Press. Boca Rato. London. Pp, 2010; 407–505
  56. Kopittke PM, Asher CJ, Blamey FPC, Menzies NW. Toxic effects of Pb2+ on the growth and mineral nutrition of signal grass Brachiaria decumbens and Rhodes grass Chloris gayana Plant Soil, 2007; 300(1-2): 127–136.10.1007/s11104-007-9395-1
  57. Qiao X, Shi G, Jia R, Chen L, Tian X, Xu J. Physiological and biochemical responses induced by lead stress in Spirodela polyrhiza Plant Growth Regul., 2012; 67: 217–225.10.1007/s10725-012-9680-8
  58. Sharma P, Dubey RS. Lead Toxicity in Plants. Brazilian J Plant Physiol, 2005; 17: 35–52. doi:10.1590/S1677-0420200500010000410.1590/S1677-04202005000100004
  59. Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem, 2003; 41(4): 391–397.10.1016/S0981-9428(03)00035-4
  60. Meitei M, Kumar A, Prasad M, Malec P, Waloszek A, Maleva G, Strzalka K. Photosynthetic pigments and pigment-protein complexes of aquatic plants under heavy metal stress. Photosynthetic pigments: chemical structure, biological function and ecology. Russian Academy of Sciences, St. Petersburg, Nauka, Russia, 2014; 314–329.
  61. Parys E, Wasilewska W, Siedlecka M, Zienkiewicz M, Drożak A, Romanowska E. Metabolic responses to lead of metallicolous and nonmetallicolous populations of Armeria maritima Arch. Environ. Contam. Toxicol. 2014; 67: 565–577.10.1007/s00244-014-0057-z25070267
  62. Yang L, Fan T, Guan L, Ren Y, Han Y, Liu Q, et al. CMDH4 encodes a protein that is required for lead tolerance in Arabidopsis. Plant Soil, 2016; 412: 317–330.
  63. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J. Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul., 2016; 81: 253–264.
  64. Nautiyal N, Sinha P. Lead induced antioxidant defense system in pigeon pea and its impact on yield and quality of seeds. Acta Physiol. Planta, 2012; 34: 977–983.10.1007/s11738-011-0894-6
  65. Wang P, Zhang S, Wang C, Lu J. Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans Ecotoxicol. Environ. Saf., 2012; 78: 28–34.10.1016/j.ecoenv.2011.11.008
  66. Asada K. Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol Plant, 1992; 85(2): 235–241.10.1111/j.1399-3054.1992.tb04728.x
  67. Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK. Lead detoxification by coontail Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 2006; 65(6): 1027–1039.10.1016/j.chemosphere.2006.03.03316682069
  68. Wang C, Gu X, Wang X, Guo H, Geng J, Yu H, Sun J. Stress response and potential biomarkers in spinach Spinacia oleracea L.) seedlings exposed to soil lead. Ecotoxicol Environ Saf, 2011; 74(1): 41–47.10.1016/j.ecoenv.2009.02.00920933285
  69. Li Y, Zhou C, Huang M, Luo J, Hou X, Wu P, Ma X. Lead tolerance mechanism in Conyza canadensis subcellular distribution, ultra-structure, antioxidative defense system, and phytochelatins. J. Plant Res., 2016; 129: 251–262.10.1007/s10265-015-0776-x
  70. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M, Prasad MNV. Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot, 2012; 75: 307–324.
  71. Strubińska J, Hanaka A. Adventitious root system reduces lead up-take and oxidative stress in sunflower seedlings. Biol. Plant, 2011; 55: 771.10.1007/s10535-011-0185-5
  72. Ali B, Mwamba TM, Gill AR, Yang C, Ali S, Daud MK, Wu Y, Zhou W. Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul, 2014; 74: 261–273. DOI 10.1007/s10725-014-9917-9.10.1007/s10725-014-9917-9
  73. Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, Banni M. Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ. Exp. Bot., 2016; 123: 1–12.10.1016/j.envexpbot.2015.10.005
Language: English
Page range: 117 - 127
Published on: Jul 25, 2019
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Boda Ravi Kiran, M.N.V. Prasad, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.