References
- Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Edit 2019; 58: 50-62
- Koller M. Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament? The EuroBiotech Journal 2019; 3(1): 32-44.
- Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA production–Identifying the ecological potential of bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.
- Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.
- Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.
- Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 2014; 8(11): 791-808.
- Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Engineering Q 2015; 29(2): 275-285.
- Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018; 23(2): 362.
- Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Engineering Q 2015; 29(2): 145-156.
- Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.
- Koller M. Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles. MOJ Polym Sci 2017; 1(2): 1-19.
- Koller M, Obruca S, Pernicova I, Braunegg G. Physiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophiles. In: Williams H, Kelly P (Eds.) Polyhydroxyalkanoates: Biosynthesis, Chemical Structures and Applications. 2018. ISBN 978-1-53613-439-1; Nova Science Publishers, New York, pp. 1-70.
- Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen, E, et al. Hydrogenophaga a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov.(formerly Pseudomonas flavaHydrogenophaga palleronii (formerly Pseudomonas palleroniiHydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis Int J Syst Evol Microbiol1989; 39(3): 319-333.
- Mahmoudi M, Baei MS, Najafpour GD, Tabandeh F, Eisazadeh H. Kinetic model for polyhydroxybutyrate (PHB) production by Hydrogenophaga pseudoflava and verification of growth conditions. Afr J Biotechnol 2010; 9(21): 3151-3157.
- Povolo S, Romanelli MG, Basaglia M, Ilieva VI, Corti A, Morelli A, Chiellini E, Casella S. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. New Biotechnol 2013; 30(6): 629-634.
- Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 2007; 7(2): 218-226.
- Koller M, Atlić A, Gonzalez-Garcia Y, Kutschera C, Braunegg G. Polyhydroxyalkanoate (PHA) biosynthesis from whey lactose. Macromol Symp 2008; 272(1): 87-92).
- Choi MH, Song JJ, Yoon SC. Biosynthesis of copolyesters by Hydrogenophaga pseudoflava from various lactones. Can J Microbiol 1995; 41(13): 60-67.
- Yoon SC, Choi MH. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J Biol Chem 1999; 274(53): 37800-37808.
- Koller M, Hesse P, Fasl H, Stelzer F, Braunegg G. Study on the effect of levulinic acid on whey-based biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Hydrogenophaga pseudoflava. Appl Food Biotechnol 2017; 4(2): 65-78.
- Choi MH, Yoon SC, Lenz RW. Production of poly (3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophaga pseudoflava. Appl Environ Microbiol 1999; 65(4): 1570-1577.
- Choi MH, Lee HJ, Rho JK, Yoon SC, Nam JD, Lim D, Lenz RW. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 2003; 4(1): 38-45.
- Brigham C, Kehail AA, Palmer JD. Ralstonia eutropha and the production of value added products: metabolic background of the wild-type strain and its role as a diverse, genetically-engineered biocatalyst organism. In: Koller M (Ed.): Recent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism. Potomac, Maryland, USA. Bentham Science Publishers Ltd. 2016. pp. 265-347.
- Kaur G, Roy I. Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 2015; 29(2): 157-172.
- Lillo JG, Rodriguez-Valera F. Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 1990; 56(8): 2517-2521.
- Page WJ, Cornish A. Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β-hydroxybutyrate. Appl Environ Microbiol 1993; 59(12): 4236-4244.
- Koller M, Bona R, Hermann C, Horvat P, Martinz J, Neto J, Pereira L, Varila P, Braunegg, G. Biotechnological production of poly(3-hydroxybutyrate) with Wautersia eutropha by application of green grass juice and silage juice as additional complex substrates. Biocat Biotrans 2005; 23(5): 329-337.
- Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate mcl-PHA) production by Pseudomonas strains. Bioresource Technol 2013; 150: 202-209.
- Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly(hydroxyalkanoates) from whey. Resour Conserv Recy 2013; 73: 64-71.
- Obruca S, Benesova P, Oborna J, Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol Lett 2014; 36(4): 775-781.
- Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 2012; 2012.
- Cinelli P, Schmid M, Bugnicourt E, et al. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil 2014; 108: 151-7.
- Koller M, Marsalek L, Braunegg G. PHA Biopolyester Production from Surplus Whey: Microbiological and Engineering Aspects. In: Koller M (Ed.): Recent Advances in Biotechnology Volume 1: Microbial Biopolyester Production, Performance and Processing: Microbiology, Feedstocks, and Metabolism. Potomac, Maryland, USA. Bentham Science Publishers Ltd. 2016. pp. 100-172.
- Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal 2018; 2(2): 89-103.
- Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).
- Braunegg G, Sonnleitner BY, Lafferty RM. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 1978; 6(1): 29-37.
- Daiber KH. Enzyme inhibition by polyphenols of sorghum grain and malt. J Sci Food Agric 1975; 26(9): 1399-1411.
- Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36(3): 856-870.
- Novak M, Koller M, Braunegg M, Horvat P. Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q 2015; 29(2): 183-220.
- Koller M, Vadlja D, Braunegg G, Atlić A, Horvat P. Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis. The EuroBiotech Journal 2017; 1(3): 203-211.
- Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 2013; 78: 67-72.
- Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technol 2008; 99(11): 4854-4863.
- Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.
- Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 2014; 41(9): 1353-1363.
- Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.