Have a personal or library account? Click to login
Solid-state fermentation of paper sludge to obtain spores of the fungus Trichoderma asperellum Cover

Solid-state fermentation of paper sludge to obtain spores of the fungus Trichoderma asperellum

Open Access
|Apr 2019

References

  1. Martínez Y, Rivero C. Efecto del uso de lodo papelero sobre el contenido de N, P, K en dos suelos de importancia en la Cuenca del Lago de Valencia. Rev Tec Fac Ing Univ 2007; 30: 63-70.
  2. Ochoa J. Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour Conserv Recy 2008; 52(7): 965-972.
  3. Shin C, Lee J, Lee J, Park S. Enzyme production of Trichoderma reesei Rut C-30 on various lignocellulosic substrates. Appl Biochem Micro 2000; 84-86: 237-245.
  4. Lee S, Koo Y, Lin J. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation. Adv Biochem Eng Biot 2004; 87: 173-194.
  5. Quinchia A, Valencia M, Giraldo G. Uso de lodos provenientes de la industria papelera en la elaboración de paneles prefabricados para la construcción. Revista EIA 2007; 8: 9-19.
  6. Garg V, Gupta. Stabilization of primary of sewage sludge during vermicomposting. J Hazard Mater 2008; 153: 1023-1038.
  7. Hara K, Mino T. Environmental assessment of sewage sludge recycling options and treatment processes in Tokio. Waste Manage 2008; 28: 2645-2652.
  8. Afridi H, Arain M, Jalbani N, Jamali M, Kazi T, Memon A, Shan A. Use of sewage sludge after liming as fertilizer maize growth. Pedosphere 2008; 18: 203-213.
  9. Wang W, Kang L, Lee Y. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30. Appl Biochem Biotech 2010; 161(1-8): 382-94.
  10. García A, Rivero C. Efecto de la aplicación de lodos papeleros sobre los contenidos de carbono microbiano y la actividad de deshidrogenasa en suelos agrícolas. Venesuelos 2011; 18: 29-35.
  11. Shen J, Agblevor F. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioproc Biosyst Eng 2011; 34(1): 33-43.
  12. Chen H, Han Q, Daniel K, Venditti R, Jameel H. Conversion of industrial paper sludge to ethanol: fractionation of sludge and its impact. Appl Biochem Biotech 2014; 174(6): 2096-2113.
  13. Gottumukkala L, Haigh K, Collard F, Van Rensburg E, Görgens J. Opportunities and prospects of biorefinery-based valorisation of pulp and paper sludge. Bioresource Technol 2016; 215: 37-49.
  14. Donmez A, Yelb H, Boranc S, Pesmand E. Cement type composite panels manufactured using paper mill sludge as filler. Constr Build Mater 2017; 142: 410–416.
  15. Lai T, Pham T, Adjallé K, Montplaisir D, Brouillette F, Barnabé S. Production of Trichoderma reesei RUT C-30 lignocellulolytic enzymes using paper sludge as fermentation substrate: An approach for on-site manufacturing of enzymes for biorefineries. Waste Biomass Valori 2017; 8 (4): 1081–1088.
  16. Korhonen J, Honkasalo A, Seppälä J. Circular Economy: The Concept and its Limitations. Ecol Econ 2018; 143: 37–46.
  17. Buchert J, Pere J, Ranua M, Siika-aho M, Viikari J. Trichoderma reesei cellulases in bleaching of kraft pulp. Appl Microbiol Biot 1994; 40: 941-945.
  18. Argüello H, Castellanos D, Cruz N. Degradación de celulosa y xilano por microorganismos aislados de dos tipos de compost de residuos agrícolas en la sabana de Bogotá. Revista Colombiana de Ciencias Hortícolas 2009; 3 (2): 237-249.
  19. Bischof R, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 2016; 15(1): 106.
  20. Harman G. Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 2000; 84: 377-393.
  21. Benítez T, Delgado J, Rey M, Rincón A, Limón M. Mejora de cepas de Trichoderma para su empleo como biofungicidas. Rev Iberoam Micol 2000; 17: 31-36.
  22. Vos C, De Cremer K, Cammue B, De Coninck B. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease. Mol Plant Pathol 2015; 16(4): 400-412.
  23. Centeno R, Pavone D. Producción de enzimas celulasas y biomasa del hongo Trichoderma reesei utilizando lodo papelero como fuente de carbono. Revista de la Sociedad Venezolana de Microbiología 2015; 35: 40-46.
  24. Pavone D, Dorta B. Diversidad del hongo Trichoderma spp. en plantaciones de maíz de Venezuela. Interciencia 2015; 40(1): 23-31.
  25. Dorta B, Bosch A, Arcas J, Ertola R. High level of sporulation of Metarhizium anisopliae in a medium containing by-products. Appl Microbiol Biot 1990; 33: 712-715.
  26. Fink S, Schubert M, Schwarse F. In vitro screening of an antaginisc Trichoderma strain against wood decay fungi. Arboricultural Journal 2008; 31: 227-248.
  27. Chinn M, Nokes S, Strobel H. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresource Technol 2007; 98: 2184–2193.
  28. Barzegar M, Hamidi Z, Latifian M (2007) Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresource Technol 2007; 98: 3634-3637.
  29. Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J 2003; 13(2-3):85-101.
  30. Aceh D. Spore production of biocontrol agent Trichoderma harzianum Effect of C/N ratio and glucose concentration. Journal Rekayasa Kimia dan Lingkubga 2007; 6: 35-40.
  31. Agosin E, Crawford A, Martin R, Mun G, Volpe D. Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World J Microb Biot 1997; 13: 225-232.
  32. Gao L, Liu X. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi. Folia Microbiol 2009; 54(2):142-6.
  33. Castro B, Valencia J. Estudios de algunos aspectos biológicos de Trichoderma sp. antagónicos a Rosellinia bunodes. Cenicafé 2004; 55 (1): 16-28.
  34. Singh V, Sanmukh R, Kumar B, Baha H. Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 2016; 193: 74-86.
  35. Herrera-Parra E, Cristóbal-Alejo J, Ramos-Zapata J. Trichoderma strains as growth promoters in Capsicum annuum and as biocontrol agents in Meloidogyne incognita. Chil J Agr Res 2017; 77(4) http://dx.doi.org/10.4067/S0718-58392017000400318
  36. González P, Guigón C. Selección de cepas nativas de Trichoderma spp. con actividad antagónica sobre Phytophthora capsici Leonian y promotoras de crecimiento en el cultivo de chile Capsicum annuum L.). Revista Mexicana de Fitopatología 2004; 22: (1) 117 – 124.
  37. Björkman T, Harman G, Mastouri F. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 2010; 100 (11): 1213 – 1221.
  38. Crowley D, Yang C. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microb 2000; 66: 365 – 369.
  39. Marín-Guirao J, Rodríguez-Romera P, Lupión-Rodríguez B, Camacho-Ferre F, Tello-Marquina J. Effect of Trichoderma on horticultural seedlings’ growth promotion depending on inoculum and substrate type. J Appl Microbiol 2016; 121(4):1095-10
Language: English
Page range: 71 - 77
Published on: Apr 24, 2019
Published by: European Biotechnology Thematic Network Association
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Rosa Dorta-Vásquez, Oscar Valbuena, Domenico Pavone-Maniscalco, published by European Biotechnology Thematic Network Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.