References
- Food and Agriculture Organisation of the United Nations. FAO Success Stories on Climate Smart Agriculture. FAO I3871E/1/05.14.
- International Society for the Acquisition of Agricultural Applications. GM Crops and the Environment. Pocket K 4 2017.
- Federoff NV. Food in a future of 10 billion. Agriculture and Food Security. 2015; 4: 11.10.1186/s40066-015-0031-7
- Food and Agriculture Organisation, United Nations Development Programme, World Programme for Food. The State of Food Insecurity in the World. http://www.fao.org/3/a-i4646e.pdf.2015
- International Society for the Acquisition of Agricultural Applications. Can Mother earth feed 9 + Billion by 2050? ISAAA Infographic 1. 2016. www.isaaa.org
- International Society for the Acquisition of Agricultural Applications. Contribution of Biotech Crops to Sustainability. ISAAA Infographic 2. 2017. www.isaaa.org
- Klumper W, Qaim M. A Meta-analysis of the impacts of genetically modified crops. PLoS ONE 2014; 9(11): e111629.10.1371/journal.pone.011162925365303
- Brookes G, Barfoot P. GM Crops: global socio-economic and environmental impacts 1996-2015. 2017. PG Economics Ltd., UK, pp. 1-201.
- James C. 20th Anniversary (1996-2015) of the Global Commercialisation of Biotech Crops and Biotech Crop Highlights in 2015. ISAAA Brief 51 2015. www.isaaa.org
- James C. ISAAA Brief 52. 2016. www.isaaa.org
- Stua M, Dearnley E What will BREXIT mean for the climate? The Conversation 2017; https://theconversation.com/what-will-brexit-mean-for-the-climate-clue-it-doesnt-look-good-87476
- Gartland KMA. Responding to climate change: barriers to progress and green opportunities. Biochemist 2006; October 54-55.
- Ruane J, Sonnino A. Agricultural biotechnologies in developing countries and their possible contribution to food security. J. Biotechnol. 2011; 156: 356-363.10.1016/j.jbiotec.2011.06.01321723334
- Gartland KMA, Gartland JS. Green biotechnology for food security in climate change. Reference Module in Food Sciences 2016; Elsevier pp.1-9. http://dx.doi.org/10.1016/B978-0-08-100596-5.03071-7
- US National Academies of Sciences, Engineering & Medicine. Genetically engineered crops: experiences and prospects. 2016. https://doi.org/10.17226/23395
- Royal Society. GM Plants: questions and answers. 2016; DES3710. https://royalsociety.org/~/media/policy/projects/gm-plants/gmplant-q-and-a.pdf
- American Council for Science and Health. Meta-analysis shows GM crops reduce pesticide use by 37 percent.
- Guo D, Chen F, Inoue K et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl coA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 2001; 13: 73-88.10.1105/tpc.13.1.73
- Wechsler SJ, Milkove D. Genetically Modified Alfalfa Production in the United States. 2017; United States Department of Agriculture Economic Research Service. https://www.ers.usda.gov/amber-waves/2017/may/genetically-modified-alfalfa-production-in-the-united-states/
- Brookes G, Taheripour F, Tyner WE. The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops and Food 2017; https://doi.org/10.1080/21645698.2017.1390637
- United States Dept. of Agriculture Biotechnology Consultation - Note to File BNF 000153 2017. https://www.fda.gov/Food/IngredientsPackagingLabeling/GEPlants/Submissions/ucm542339
- Rommens CM, Yan H, Swords K et al. Low-acrylamide French fries and potato chips. Plant Biotechnology Journal 2008; 6:843-853.1866237210.1111/j.1467-7652.2008.00363.x
- Simplot Plant Sciences 2017. Innate second generation potatoes with late blight protection receive EPA and FDA clearances. http://www.simplot.com/plant_sciences
- Halterman D, Guenthner J, Collinge S et al. Biotech crops in the 21st century: 20 years since the first biotech potato. Am. J. Potato Res. 2016; 93: 1-20.10.1007/s12230-015-9485-1
- Armen, J. Arctic apples: Leading the ‘next wave’ of biotech foods with consumer benefits. Australasian Biotechnology, 2015; 25: 50. No. 2, http://search.informit.com.au/documentSummary;dn=296007511823496;res=IELHEAISSN:1036-7128
- Smyth SJ. Canadian regulatory perspectives on genome engineered crops. GM Crops and Food 2017; 8: 35-43.10.1080/21645698.2016.1257468
- Silva KJP, Brunings AM, Pereira JA et al. The Arabidopsis ELP/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca. BMC Plant Biology 2017; 17:230.2919117010.1186/s12870-017-1173-5
- Van Der Straeten D, Fitzpatrick TB, De Steur H Biofortification of crops: achievements future challenges, socio-economic, health and ethical aspects. Curr. Op. Biotech. 2017; 44:vii-x.10.1016/j.copbio.2017.03.007
- Barreca N. Biofortification pioneers win 2016 World Food Prize for fight against malnutrition. 2016; World Food Prize Organisation 2016; https://www.worldfoodprize.org/index.cfm/87428/40322/biofortification_pioneers_win_2016world_food_prize
- Blancquaert D, Van Daele J, Strobbe S et al. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology 2015; 33: 1076-1078.10.1038/nbt.335826389575
- Li K-T, Moulin M, Mangel N et al. Increased bioavailable vitamin B6 in field grown transgenic cassava for dietary sufficiency. Nature Biotechnology 2015; 33: 1029-1032.10.1038/nbt.331826448082
- Giuliano G. Provitamin A biofortification of crop plants: a gold rush with many miners. Current Opinion in Biotechnology 2017; 44: 169-182.2825468110.1016/j.copbio.2017.02.001
- Potrykus I. “Golden Rice”, a GMO-product for public good, and the consequences of GE-regulation. J of Plant biochemistry and biotechnology 2012; 21S: 68-75.
- Golden Rice Project 2017. http://www.goldenrice.org
- Stone GD, Glover D. Disembedding grain: Golden rice, the Green Revolution and heirloom seeds in the Philippines. Agriculture and Human Values 2017; 34: 87-102.10.1007/s10460-016-9696-1
- Tang G, Qin J, Dolnikowski GG et al. Golden Rice is an effective source of vitamin A. American Journal of Clinical Nutrition 2009; 89: 1776-1783.10.3945/ajcn.2008.27119
- De Steur H, Mehta S, Gellynck X et al. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Current opinion in Biotechnology 2017; 44: 181-188.10.1016/j.copbio.2017.02.003
- Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology 2005; 23:482-487.10.1038/nbt108215793573
- Brooks S. Biofortification: Lessons from the Golden Rice Project. Food Chain 2013; 3: 77-88.10.3362/2046-1887.2013.007
- Kava R. All I want for Christmas is Golden Rice. American Council for Science and Health News 2017; 08.12.2017. https://www.acsh.org/news/2017/12/08/all-i-want-christmas-golden-rice-12251
- World Health Organisation. Micronutrient deficiencies: Vitamin A deficiency 2017; http://www.who.int/nutrition/topics/vad/en/
- UNICEF Data. East Asia and the Pacific achieved the highest twodose coverage with vitamin A supplements of all regions in 2015. December 2017; https://data.unicef.org/topic/nutrition/vitamin-a-deficiency/
- Kava R. Move over, Golden rice- Golden potatoes are on the way. American Council for Science and Health News 2017; 13.11.2017. https://www/acsh.org/news/2017/11/13/move-over-goldenrice-%2%80%94-golden-potatoes-are-way-12136
- Chitchumroonchokchai C, Diretto G, Parisi B et al. Potential of golden potatoes to improve vitamin a and vitamin E status in developing countries. PLoSONE 2017; 12 (11): e0187102. https://doi.org/10.1371/journal.pone.018710210.1371/journal.pone.0187102
- Che P, Zhao Z-Y, Glassman K et al. Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. PNAS (USA) 2016; 113: 11040-1104510.1073/pnas.1605689113
- Report G. Investing in the future- A united call to action on vitamin and mineral deficiencies. 2009; http://www.unitedcalltoaction.org/index.asp
- Blancquaert D, De Steur H, Gellynck X et al. Metabolic engineering of micronutrients in crop plants. Annals New York academy Sciences (2017) 1390: 59-73.10.1111/nyas.13274
- Waltz E. Vitamin A Super Banana in human trials. Nature Biotechnology 2014; 32: 857.2520302510.1038/nbt0914-857
- Paul J-Y, Khanna H, Kleidon J et al. Golden bananas in the field: elevated pro-vitamin A from the expression of a single banan transgene. Plant Biotech. J. 2017; 15: 520-532.10.1111/pbi.12650
- Mbabazi R. Molecular characterisation and carotenoid quantification of pro-vitamin A biofortified genetically modified bananas in Uganda. PhD Thesis. 2015; Queensland University of Technology.
- Buah S, Mlalazi B., Khanna H, Dale JL and Mortimer CL. The quest for golden bananas: investigating carotenoid regulation in a Fe’i group Musa cultivar. J. Agric. Food Chem. 2016; 64: 3176-3185.10.1021/acs.jafc.5b05740
- Dhandapani R, Singh VP, Arora A et al. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPSy) gene in banana (Musa sp.) cultivars. J Food Sci. technol. 2017; 54: 4416-4426.10.1007/s13197-017-2918-829184248
- Water Efficient Maize for Africa. 2017; https://wema.aatf-africa.org/about-wema-project
- Xu J, Yuan Y, Xu Y et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biology 2014; 14: 83.2468480510.1186/1471-2229-14-83
- African Agricultural Technology Foundation. DroughtTEGO WE1101 Drought-tolerant maize hybrid. 2017; http://www.aatf-africa.org
- Morsy M. Microbial symbionts: a potential bio-boom. J. Investig. Genomics 2015; 2: 00015.
- Castiglioni P, Warner D, Bensen RJ et al. Bacterial RNA chaperones confer abiotic stress tolerance. Plant Physiology. 2008; 147: 446-455.1852487610.1104/pp.108.118828
- Nuccio ML, Wu J, Mowers R et al. Expression of tehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology. 2015; 33: 862-869.10.1038/nbt.3277
- Adee E. Drought-tolerant corn hybrids yield more in droughtstressed environments with no penalty in non-stressed environments. Frontiers in Plant Science. 2016; 13 Oct 2016.27790237
- Rea-hybrids. Introducing Genuity DroughtGard hybrids. 2017; http://www.rea-hybrids.com
- Siegfried BD, Hellmich RL. Understanding successful resistance management: the European corn borer and Bt corn in the United States. GM Crops Food. 2012; 3:184-193.10.4161/gmcr.2071522688691
- Ammann K The impact of agricultural biotechnology on biodiversity. (2004) Botanic gardens, University of Bern.
- Salt tolerance of plants. University of Alberta Agriculture and Forestry (2017). http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3303
- Tilbrook J, Schilling RK, Berger B et al. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. Functional Plant Biology (2017) 14: 1194-1206.
- Zou C, Chen A, Xiao L et al. A high-quality genome assembly of quinoa provides insightsinto the molecular basis of salt bladder- based salinity tolerance and exceptional nutritional value. Cell Research (2017) DOI: 10.1038/cr.2017.124.
- Rakshit S. The Handbook of Plant Mutation Screening: Mining of natural and induced alleles. Wiley-VCH (2010) pp. 185-197.
- Takagi H, Tamiru M, Abe A et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology (2015) 33: 445-449.2579893610.1038/nbt.3188
- Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-seq. Bioinformatics (2009)25: 1105-1109.1928944510.1093/bioinformatics/btp120
- Goswani K, Tripathi A, Sanan-Mishra N. Comparative miRomics of salt-tolerant and salt-sensitive rice. J Integrative bioinformatics (2017) 2017002.
- Tan GC, Chan E, Molnar A et al. 5’-isomiR variation is of functional and evolutionary importance. Nucleic Acids Research (2104) 42: 9424-9435.
- Morin RD, O’Connor MD, Griffith M et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells”. Genome Research (2008); 18: 610-621.1828550210.1101/gr.7179508
- Regalado A. The next great GMO debate. MIT Technology Review (2015) https://www.technologyreview.com/s/540136/the-nextgreat-gmo-debate
- Shew AM, Danforth DM, Nalley LL et al. New innovations in agricultural biotech: consumer acceptance of topical RNAi in rice production. Food Control (2017) 81: 189-195.10.1016/j.foodcont.2017.05.047
- Shan Q, Wang Y, Li j et al. Genome editing in rice and wheat using the CRISPR/Cas9 system. Nature Protocols (2014) 9: 2395-2410.10.1038/nprot.2014.157
- Gartland KMA, Dundar M, Beccari T et al. Advances in biotechnology: genomics and genome editing. EuroBiotech Journal (2017) 1:1-8.
- Ricroch A, Clairand P, Harwood W Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerging Topics in Life Sciences (2017) 1: 169-182.10.1042/ETLS20170085
- LeBlanc C, Zhang F, Mendez J et al. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant Journal (2017) DOI: 10.1111/tpj.13782
- Shen H, Zhong X, Zhao F et al. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nature Biotechnology (2015) 33: 996-1003.2628041310.1038/nbt.3321
- Nuccio ML, Wu J, Mowers R et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yields in well-watered and drought conditions. Nature Biotechnology (2015) 33: 862-869.2647319910.1038/nbt.3277
- Yang X, Hu R, Tuskan GA et al. The Kalanchoe genome provides insights into crassulacean acid metabolism. Nature Communications (2017) 8: 1899.10.1038/s41467-017-01491-729196618