Have a personal or library account? Click to login
PD-1 Blockage Facilitates Cytotoxic T and NK Cells Tumoricidal Phenotype in a Murine Breast Carcinoma Cover

PD-1 Blockage Facilitates Cytotoxic T and NK Cells Tumoricidal Phenotype in a Murine Breast Carcinoma

Open Access
|Aug 2023

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.
  2. Internet site: https://gco.iarc.fr/today/data/factsheets/populations/688-serbia-fact-sheets.pdf
  3. Brown L, Carr MJ, Sam C, Sun W, Whiting J, Kim Y, et al. Tolerance and Outcomes of Neoadjuvant Chemotherapy in Geriatric Breast Cancer Patients. J Surg Res. 2023; 283: 329-335. doi:10.1016/j.jss.2022.10.092.
  4. Guo YQ, Ju QM, You M, Liu Y, Yusuf A, Soon LK. Depression, anxiety and stress among metastatic breast cancer patients on chemotherapy in China. 2023; 22(1): 33. doi: 10.1186/s12912-023-01184-1.
  5. Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget. 2017; 8(48): 84559-71. doi: 10.18632/oncotarget.19187.
  6. Hu Y, Li Y, Yao Z, Huang F, Cai H, Liu H, et al. Immunotherapy: Review of the Existing Evidence and Challenges in Breast Cancer. Cancers (Basel). 2023; 15(3): 563. doi: 10.3390/cancers15030563.
  7. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018; 359: 1350-1355. doi: 10.1126/science.aar4060.
  8. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11(11): 3887-95. doi: 10.1002/j.1460-2075.1992.tb05481.x.
  9. Mariotti FR, Petrini S, Ingegnere T, Tumino N, Besi F, Scordamaglia F, et al. PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncoimmunology. 2018; 8(3): 1557030. doi: 10.1080/2162402X.2018.1557030.
  10. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol. 2017; 139 (1): 335-346.e3. doi: 10.1016/j.jaci.2016.04.025.
  11. Gutic B, Bozanovic T, Mandic A, Dugalic S, Todorovic J, Stanisavljevic D, et al. Programmed cell death-1 and its ligands: Current knowledge and possibilities in immunotherapy. Clinics (Sao Paulo). 2023; 78: 100177. doi: 10.1016/j.clinsp.2023.100177.
  12. Nie X, Chen W, Zhu Y, Huang B, Yu W, Wu Z, et al. B7-DC (PD-L2) costimulation of CD4+ T-helper 1 response via RGMb. Cell Mol Immunol. 2018; 15(10): 888-97. doi: 10.1038/cmi.2017.17.
  13. Hoffmann O, Wormland S, Bittner AK, Collenburg M, Horn PA, Kimmig R, et al. Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse. J Cancer Res Clin Oncol. 2023; 149(3):1159-74. doi: 10.1007/s00432-022-039 80-9.
  14. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015; 21 (1): 24-33.
  15. Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020; 12 (3): 738.
  16. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity. 2016; 44 (5): 955-72.
  17. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018; 18 (10): 635-47.
  18. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 2019; 234 (6): 8509-21.
  19. Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol. 2019; 40 (4): 310-27
  20. Alper KM, Gunes E. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev. 2016; 31: 73-81.
  21. Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. 2016; 1(17): e89829. doi: 10.1172/jci.insight.89829.
  22. Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol. 2017; 31: 64-75. doi:10.1016/j.smim.2017.07.011.
  23. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity. 2017; 47(5): 820-33. doi: 10.1016/j.immuni.2017.10.008.
  24. Jurisevic M, Jagic N, Gajovic N, Arsenijevic A, Jovanovic M, Milovanovic M, et al. O,O’-diethyl-(S,S)-ethylenediamine-N,N’-di-2-(3-cyclohexyl) propanoate dihydrochloride enhances influx of effective NK and NKT cells in murine breast cancer. Vojnosanit Pregl. 2020; 77(7): 715–723 doi:10.2298/VSP180723149J.
  25. Gajovic N, Jurisevic M, Pantic J, Radosavljevic G, Arsenijevic N, Lukic ML, et al. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice. Endocr Relat Cancer 2018; 25(4): 493-507.
  26. Keenan TE, Tolaney SM. Role of Immunotherapy in Triple-Negative Breast Cancer. J Natl Compr Canc Netw. 2020; 18(4): 479-489. doi: 10.6004/jnccn.2020.7554.
  27. Liu Q, Cheng R, Kong X, Wang Z, Fang Y, Wang J. Molecular and Clinical Characterization of PD-1 in Breast Cancer Using Large-Scale Transcriptome Data. Front Immunol. 2020; 11: 558757. doi: 10.3389/fimmu. 2020.558757.
  28. Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, et al. The Mechanism of Anti-PD-L1 Antibody Efficacy against PD-L1-Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discov. 2019; 9(10): 1422-1437. doi: 10.1158/2159-8290.CD-18-1259.
  29. Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 2020; 130(3): 1185-1198. doi: 10.1172/JCI128895.
  30. Morandi F, Horenstein AL, Chillemi A, Quarona V, Chiesa S, Imperatori A, et al. CD56brightCD16 NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting autologous CD4+ T cell proliferation. J Immunol. 2015; 195(3): 965–972. doi: 10.4049/jimmunol.1500591.
  31. Tian W, Wang L, Yuan L, Duan W, Zhao W, Wang S, et al. A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor-associated macrophages and growth-arrest specific protein 6. Cancer Sci. 2016; 107(7): 882–889. doi: 10.1111/cas.12964.
  32. Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol. 2021; 109(1): 185-194. doi: 10.1002/JLB.3MR0820-685R.
  33. Zhang H, Li Y, Liu X, Liang Z, Yan M, Liu Q, et al. ImmTAC/Anti-PD-1 antibody combination to enhance killing of cancer cells by reversing regulatory T-cell-mediated immunosuppression. Immunology. 2018; 155(2): 238-250. doi: 10.1111/imm.12954.
  34. Wu D, Liu Y, Pang N, Sun M, Wang X, Haridia Y, et al. PD-1/PD-L1 pathway activation restores the imbalance of Th1/Th2 and treg/Th17 cells subtypes in immune thrombocytopenic purpura patients. Medicine (Baltimore). 2019; 98(43): e17608. doi: 10.1097/MD.000000 0000017608.
  35. Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019; 178(5): 1189-1204.e23. doi: 10.1016/j.cell.2019.07.044.
  36. Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017; 38(5): 310- 322. doi: 10.1016/j.it.2017.01.006.
  37. Borrego F, Robertson MJ, Ritz J, Pena J, Solana R. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 1999; 97(1): 159–165.
  38. Wang Z, Tan F. The blockade of PD-1/PD-L1 pathway promotes the apoptosis of CD19+ CD25+ Bregs and suppresses the secretion of IL-10 in patients with allergic rhinitis. Scand J Immunol. 2020; 91(2): e12836. doi: 10.1111/sji.12836.
  39. Prasad S, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1). Immun Inflamm Dis. 2018; 6(2): 332-344. doi: 10.1002/iid3.221.
  40. Gao Z, Feng Y, Xu J, Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front Immunol. 2022; 13: 977394. doi: 10.3389/fimmu.2022.977394.
DOI: https://doi.org/10.2478/eabr-2023-0005 | Journal eISSN: 2956-2090 | Journal ISSN: 2956-0454
Language: English
Submitted on: Mar 8, 2023
|
Accepted on: Jun 26, 2023
|
Published on: Aug 1, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sanja Tripković, Miodrag Jocić, Isidora Stanisavljević, Marina Jovanović, Milena Jurišević, Andjela Petrović, Milan Jovanović, Boško Milev, Veljko Marić, Marina Jovanović, published by University of Kragujevac, Faculty of Medical Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

AHEAD OF PRINT