Have a personal or library account? Click to login
Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note Cover

Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note

Open Access
|Aug 2022

References

  1. Bays, Timothy. 2000. Reflections on Skolem’s paradox. Doctoral Dissertation. UCLA.
  2. Bays, Timothy. 2007. “The mathematics of Skolem’s paradox”. In Dale Jacquette (ed.), Philosophy of Logic Amsterdam: Elsevier: 615–48.
  3. Bays, Timothy. 2014. “Skolem’s paradox”. In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2014 Edition). https://plato.stanford.edu/archives/win2014/entries/paradox-skolem/
  4. Hart, W. D. 2000. “Skolem Redux”. Notre Dame Journal of Formal Logic 41(4): 399–414.
  5. Hasenjaeger, Gisbert. 1967. “On Löwenheim-Skolem-type insufficiencies of second order logic”. In John N. Crossley (ed.), Sets, Models and Recursion Theory, Volume 46. Amsterdam: Elsevier: 173–82.
  6. Mendelson, Elliot. 2015. Introduction to Mathematical Logic, Sixth Edition. New York: Chapman & Hall.
  7. Shapiro, Stewart. 1985. “Second-order languages and mathematical practice”. The journal of Symbolic Logic 50(3): 714–42.
  8. Shapiro, Stewart. 1991. Foundations without Foundationalism: A Case for Second-order Logic. Oxford: Clarendon Press.
  9. van Dalen, Dirk. 2013. Logic and Structure, Fifth Edition. Heidelberg: Springer Verlag.
DOI: https://doi.org/10.2478/disp-2022-0003 | Journal eISSN: 2182-2875 | Journal ISSN: 0873-626X
Language: English, Portuguese
Page range: 41 - 49
Published on: Aug 29, 2022
Published by: University of Lisbon
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Davood Hosseini, Mansooreh Kimiagari, published by University of Lisbon
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.