References
- Abel, B. A., & Coates, G. W., 2025. Introduction: The Future of Plastics Sustainability. In Chemical Reviews, 125(3), 1255–1256. ACS Publications.
- Ali, A. M., Falah, M. W., Hafedh, A. A., & Al-Khafaji, Z. S., 2022. Evaluation the influence of steel- fiber on the concrete Characteristics. Periodicals of Engineering and Natural Sciences, 10(3):368-379
- Dufresne, A., 2013. Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220–227. DOI: 10.1016/j.mattod.2013.06.004
- Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F., 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. DOI: 10.1016/j.compositesb.2012.04.053
- Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S., 2017. Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer, 132, 368–393.
- Luo, T., Hu, Y., Zhang, M., Jia, P., & Zhou, Y., 2025. Recent advances of sustainable and recyclable polymer materials from renewable resources. Resources Chemicals and Materials, 4(2), 100085.
- Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., & Karim, N., 2022. Sustainable Fiber-Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11). DOI: 10.1002/adsu.202200258
- Marquardt, F., Mommer, S., Lange, J., Jeschenko, P. M., Keul, H., & Möller, M., 2017. Homoserine lactone as a structural key element for the synthesis of multifunctional polymers. Polymers, 9(4), 130.
- Mohanty, A. K., Vivekanandhan, S., Pin, J.-M., & Misra, M., 2018. Composites from renewable and sustainable resources: Challenges and innovations. Science, 362(6414), 536–542. DOI: 10.1126/science.aat9072
- Oksman, K., Aitomäki, Y., Mathew, A. P., Siqueira, G., Zhou, Q., Butylina, S., Tanpichai, S., Zhou, X., & Hooshmand, S., 2016. Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 83, 2–18. DOI: 10.1016/j.compositesa.2015.10.041
- Phiri, R., Rangappa, S. M., Siengchin, S., Oladijo, O. P., & Dhakal, H. N., 2023. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Advanced Industrial and Engineering Polymer Research, 6(4), 436–450.
- Tejaswini, M. S. S. R., Pathak, P., Ramkrishna, S., & Ganesh, P. S., 2022. A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Science of The Total Environment, 825, 153973. DOI: 10.1016/j.scitotenv.2022.153973
- Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., Xu, H., Hu, B., & Song, H., 2020. From cellulose to cellulose nanofibrils—a comprehensive review of the preparation and modification of cellulose nanofibrils. Materials, 13(22), 5062.
- Sabr, O. H., Obaid, M. N., Al-Mutairi, N. H., Krynke, M., & Mielczarek, K., 2024. Study the effect of zinc oxide nanoparticles on degradation, antibacterial, thermal and morphological properties of polyvinyl alcohol films. Production Engineering Archives, 30(4), 528-536.
- Jiang, Y., Jiang, J., Yang, L., Zhang, Y., Wang, X., Zhao, N., ... & Li, Q., 2023. In situ nanofibrillar polypropylene-based composite microcellular foams with enhanced mechanical and flame-retardant performances. Polymers, 15(6), 1497.
- Iskakov, R. M., Bukanova, A. S., Kalauova, A. S., Kairliyeva, F. B., Nauashev, A. N., Shambilova, G. K., ... & Skvortsov, I. Y., 2025. Eco-Friendly Polypropylene Composites Reinforced with Cellulose Fibers and Silica Nanoparticles. Polymers, 17(10), 1290.
- Caramitu, A. R., Lungu, M. V., Ciobanu, R. C., Ion, I., Pătroi, D., Sbârcea, B. G., ... & Constantinescu, D., 2025. Biodegradable Polymer Composites Based on Polypropylene and Hybrid Fillers for Applications in the Automotive Industry. Processes, 13(4), 1078.