References
- Aziz, Ha., Shariff, Am., Rusli, R., Managing process safety information based on process safety management requirements, Process Safety Progress, 33(1), 41-48, DOI: 10.1002/prs.11610.
- Behie, SW., Halim, SZ., Efaw, B., O’Connor, TM., Quddus, N., 2020, Guidance to improve the effectiveness of process safety management systems in operating facilities, Journal of Loss Prevention in the Process Industries, 68, DOI: 10.1016/j.jlp.2020.104257
- Bourassa, D., Gauthier, F., Abdul-Nour, G., 2016, Equipment failures and their contribution to industrial incidents and accidents in the manufacturing industry, International Journal of Occupational Safety and Ergonomics, 22(1), 131-141, DOI: 10.1080/10803548.2015.1116814
- Brocal, F., Gonzalez, C., Sebastian, Ma., 2018, Technique to identify and characterize new and emerging risks: A new tool for application in manufacturing processes, Safety Science, 109, 144-156, DOI: 10.1016/j.ssci.2018.05.005.
- Caruana, L., Francalanza, E., Safety 4.0 for collaborative robotics in the factories of the future, FME Transactions, 49(4), 842-850. DOI: 10.5937/fme2104842C.
- Gajdzik, B., Wolniak, R., 2022. Influence of Industry 4.0 Projects on Business Operations: literature and empirical pilot studies based on case studies in Poland, Journal of Open Innovation: Technology, Market, and Complexity, 8(1), DOI: 10.3390/joitmc8010044.
- Gajgoiti, U., Lopez, A., Armentia, A., Estevez, E., Marcos, M., 2021. Model-driven design and development of flexible automated production control configurations for Industry 4.0, Applied Sciences-Basel, 11(5), DOI: 10.3390/app11052319.
- Hetmanczyk, MP., 2024. A method for evaluating the maturity level of production process automation in the context of digital transformation-Polish case study, Applied Sciences-Basel, 14(11), DOI: 10.3390/app14114380
- Javed, Ma., UL Muram, F., Hansson, H., Punnekkat, S., Thane, H., Towards dynamic safety assurance for Industry 4.0, Journal of Systems Architecture, 114, DOI: 10.1016/j.sysarc.2020.101914
- Kampa, A., Golda, G., 2018. Modelling and simulation method for production process automation in steel casting foundry, Archives of Foundry Engineering, 18(1), 47-52. DOI: 10.24425/118810.
- Kopczerwski, M., Smal, T., Safety in a manufacturing company, Foundations of Management, 9(1), 33-42, DOI: 10.1515/fman-2017-0003
- Leveson, N., A systems approach to risk management through leading safety indicators, Reliability Engineering & System Safety, 136, 17-34. DOI: 10.1016/j.ress.2014.10.008.
- Lievano-Martinez, FA., Fernandez-Ledesma, JD., Burgos, D., Branch-Bedoya, JW., Jimenez-Builes, JA., 2022, Intelligent process automation: an application in manufacturing industry, Sustainability, 14(14), DOI: 10.3390/su14148804.
- Malysa, T., Furman, J., 2021, Application of selected lean manufacturing (LM) tools for the improvement of work safety in the steel industry, Metalurgija, 60(3-4), 434-436.
- Ortiz-Espinoza, AP., Jimenez-Gutierrez, A., El-Halwagi, MM., Kazantzis, NK., Kazantzi, V., 2021, Comparison of safety indexes for chemical processes under uncertainty, Process Safety and Environmental Protection, 148, 225-236, DOI: 10.1016/j.psep.2020.09.069.
- Pacana, A., Czerwińska, K., 2025a, Analysis of industrial enterprise innovation in the era of Industry 4.0, Scientific Journals of the Maritime University of Szczecin-Zeszyty Naukowe Akademii Morskiej W Szczecinie, 83(115), 63-72. DOI: 10.17402/650.
- Pacana, A., Czerwińska, K., 2025b, Validation of the use of KPIs to measure information security management system performance in manufacturing companies, Production Engineering Archives, 31(2), 266-275, DOI: 10.30657/pea.2025.31.26
- Pacana, A., Czerwińska, K., Bednarova, L., Simkova, Z., 2025, Integration of key performance indicators (kpi) taxonomy and energy efficiency analysis in the aluminium industry using industry 4.0 technologies, Energies, 18(23), 6133. DOI: 10.3390/en18236133.
- Pacana, A., Czerwińska, K., Zwolenik, P., 2021, Risk management elements in the production of a selected automotive product, Scientific Papers of Silesian University of Technology – Organization and Management Series, 151, 539-551, DOI: 10.29119/1641-3466.2021.151.37
- Pasman, H., Rogers, W., 2014, How can we use the information provided by process safety performance indicators? Possibilities and limitations, Journal of Loss Prevention in the Process Industries, 30, 197-206. DOI: 10.1016/j.jlp.2013.06.001.
- Qiao, WL., Huang, EZ., Guo, HTY., Liu, Y., Ma, XX., 2022, Barriers involved in the safety management systems: a systematic review of literature, International Journal of Environmental Research and Public Health, 19(15), DOI: 10.3390/ijerph19159512
- Saniuk, S., Grabowska, S., Gajdzik, B., 2020. Social expectations and market changes in the context of developing the Industry 4.0 concept, Sustainability, 12(4), DOI: 10.3390/su12041362.
- Wang, XJ., Hu, HS., 2020. A robust control approach to automated manufacturing systems combining absorbing and distributing characteristics, IEEE Transactions on Systems Man Cybernetics-Systems, 50(12), 50-24-5036. DOI: 10.1109/TSMC.2019.2951742.
- Wang, XQ., Hu, HF., Wang, YY., Wang, ZY., 2024, IoT real-time production monitoring and automated process transformation in smart manufacturing, Journal of Organizational and end User Computing, 36(1), DOI: 10.4018/JOEUC.336482
- Ye, ZG., Cai, ZQ., Si, SB., Zhang, S., Yang, H., 2020. Competing failure modeling for performance analysis of automated manufacturing systems with serial structures and imperfect quality inspection, IEEE Transactions on Industrial Informatics, 16(10), 6476-6486, DOI: 10.1109/TII.2020.2967030.
- Zwetsloot, GIJM., Ashford, NA., 2003, The feasibility of encouraging inherently safer production in industrial firms, Safety Science, 41(2-3), 219-240, DOI: 10.1016/S0925-7535(02)00003-6.