References
- Angrist, J.D., Pischke, J-S., 2009, Mostly Harmless Econometrics, Princeton University Press.
- Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. Available from: http://www.jstor.org/stable/2346101.
- Chalehchaleh, R., Farahbakhsh, R., Crespi, N., 2025. Addressing data scarcity in multilingual fake news detection: an LLM-based dataset augmentation approach, Social Network Analysis and Mining, 15(1).
- Chaudhari, D., Mhatre, K., Jadhav, B., Jakhotia, P., Mangela, M., 2026. Securing Media Integrity: A Blockchain-Based Approach Against AI-Generated Deepfakes, in Advanced Computing and Intelligent Technologies, eds S Das, M Paprzycki, A Ghosh & M Bianchini, Springer Nature Singapore, Singapore, 465–480.
- Cherep, O., Kaliuzhna, Y., Mykhailichenko, L., Markova, S., Naumenko, Y., 2025. Information and control systems, Technology audit and production reserves, 2(82), 74–79.
- Cox, D.R., 1972. Regression Models and Life-Tables, Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187–220. Available from: http://www.jstor.org/stable/2985181.
- Del Moral Pérez, M.E., López-Bouzas, N., Castañeda Fernández, J., Del Bellver Moreno, M.C., 2025. Universitarios frente a las Fake News generadas por Inteligencia Artificial: estrategias asociadas al pensamiento crítico que adoptan, Educación XX1, 28(2), 69–121.
- Demir, G., Darıcı, S., Tamer, Z., Taydaş, O., Pamučar, D., 2025. Even I believed it! How is it possible?” The disinformation exam of journalists in the AI age: fuzzy logical approach, Journal of Computational Social Science, 8(4).
- Farhan, M., Butt, U., Sulaiman, R.B., Alraja, M., 2025. Self-Sovereign Identities and Content Provenance: VeriTrust – A Blockchain-Based Framework for Fake News Detection, Future Internet, 17(10), 448.
- García Márquez, F.P., Hameed, A.A., Jamil, A. (eds.), 2026, Pattern Recognition and Artificial Intelligence, Springer Nature Switzerland, Cham.
- Harris, S., Hadi, H.J., Ahmad, N., Alshara, M.A., 2025. Multi-domain Urdu fake news detection using pre-trained ensemble model, Scientific reports, 15(1), 8705.
- Khalid, M., Mushtaq, M.F., Akram, U., Safran, M., Alfarhood, S., Ashraf, I., 2025. Sentiment analysis for deepfake X posts using novel transfer learning based word embedding and hybrid LGR approach, Scientific reports, 15(1), 28305.
- Liang, K.Y., Zeger, S.l., 1986. Longitudinal data analysis using generalized linear models, Biometrika, 73(1), 13–22.
- Ma, R., Wang, X., Yang, G.R., 2025. Fighting fake news in the age of generative AI: Strategic insights from multi-stakeholder interactions, Technological Forecasting and Social Change, 216, 124125.
- McNEMAR, Q. 1947. Note on the sampling error of the difference between correlated proportions or percentages, Psychometrika, 12(2), 153–157.
- Murru, M.F., Carlo, S., 2025. AI and newsmaking: an exploratory investigation of discourses and practices in Italian newsrooms, Online Media and Global Communication, 4(3), 554–569.
- Nasser, M., Arshad, N.I., Ali, A., Alhussian, H., Saeed, F., Da’u, A., Nafea, I., 2025. A systematic review of multimodal fake news detection on social media using deep learning models, Results in Engineering, 26, 104752.
- Nwaiwu, S., Jongsawat, N., Tungkasthan, A., 2025. Decoding Disinformation: A Feature-Driven Explainable AI Approach to Multi-Domain Fake News Detection, Applied Sciences, 15(17), 9498.
- Pandey, R., Kushwaha, A.K.S., 2025. Detecting deepfake videos: an enhanced hybrid deep learning model, Signal, Image and Video Processing, 19(9).
- Ragab, M., Ashary, E.B., Kateb, F., Hakeem, A., Mosli, R., Albogami, N.N., Nooh, S., 2025. Classification of human-written and AI-generated sentences using a hybrid CNN-GRU model optimized by the spotted hyena algorithm, Alexandria Engineering Journal, 126, 116–130.
- Saadi, A., Belhadef, H., Guessas, A., Hafirassou, O., 2025. Enhancing Fake News Detection with Transformer Models and Summarization, Engineering, Technology & Applied Science Research, 15(3), 23253–23259.
- Saito, K., 2026. Legal Policy on Digital Replicas’ in Crisis or Redemption with AI and Robotics? The Dawn of a New Era, eds M.F., Silva, M.O., Tokhi, M.I.A., Ferreira, B., Malheiro, P., Guedes, P., Ferreira, M.T., Costa, Springer Nature Switzerland, Cham, 154–160.
- Singh, S.K., Assi, S., Ginige, T., Mohammed, A.H., B., Wahit, F., Al-Jumeily, OBE, D., 2026. Fake News Detection Using Explainable Artificial Intelligence in Data Science and Emerging Technologies, eds Y.B., Wah, D., Al-Jumeily & M.W., Berry, Springer Nature Singapore, Singapore, 477–488.
- Sun, L., Abraham, S., 2021. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects, Journal of Econometrics, 225,(2), 175–199.
- Zadrozny, B., Elkan, C., 07232002. Transforming classifier scores into accurate multiclass probability estimates, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, eds O.R., Zaïane, R., Goebel, D., Hand, D., Keim, R., Ng., ACM, New York, NY, USA, 694–699.
- Żywiołek, J., 2025a. Creating Knowledge-Based Value for Data Security in Enterprises, European Conference on Knowledge Management, 26(2), 1136–1145.
- Żywiołek, J., 2025b. The Impact of Generative Artificial Intelligence on Knowledge Exchange in Supply Chains, European Conference on Knowledge Management, 26(2), 1146–1154.
- Żywiołek, J., Szymonik, A., Smal, T., 2025, Navigating Supply Chain Turbulence, Productivity Press, New York.