References
- Andriichuk, O., Yasiuk, I., Uzhehov, S., Palyvoda, O., 2021. Experimental Research of Strength Characteristics of Steel Fiber Reinforced Concrete Gutters and Modeling of Their Work Using the Finite Element Method. Lecture Notes in Civil Engineering, 100, 1–8. DOI: 10.1007/978-3-030-57340-9_1
- Bandyopadhyay, K., Lee, J., Shim, J. H., Hwang, B., Lee, M. G., 2019. Modeling and experiment on microstructure evolutions and mechanical properties in grade 600 MPa reinforcing steel rebar subjected to TempCore process. Materials Science and Engineering: A, 745, 39-52. doi:10.1016/j.msea.2018.12.079
- Basiruddin, S.K., Khan, A.K., Lenka, S., Syed, B., Chakraborty, J., Chakrabarti, D., Kundu, S., 2016. Effect of microstructure and texture on the impact transition behaviour of thermo-mechanically treated reinforcement steel bar. Mater, Des, 90, 1136-1150. doi:10.1016/j.matdes.2015.11.053
- Blikharskyi, Z.Ya., 2008. Reconstruction and strengthening of buildings and structures. Textbook, Lviv, Lviv Polytechnic Publishing House.
- Blikharskyy, Y., Selejdak, J., Bobalo, T., Khmil, R., Volynets, M., 2021. Influence of the percentage of reinforcement by unstressed rebar on the deformability of pre-stressed RC beams. Production Engineering Archives, 27(3), pp. 212–216. DOI: 10.30657/pea.2021.27.28
- Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., Khmil, R., 2019. Corrosion of Reinforce Bars in RC Constructions, System Safety: Human - Technical Facility – Environment, 1(1), 277-283, DOI: 10.2478/czoto-2019-0036
- Borysovska, E.M., Podrezov, Yu.N., 2006. Analysis of the Dislocation Annihilation Process in the Case of their Chaotic Disposition. Kiev: Collection «Mathematical Models and a Computational Experimenting Materials Science», 8, 116.
- Cadoni, E., Dotta, M., Forni, D., Tesio, N., Albertini, C., 2013. Mechanical behaviour of quenched and self-tempered reinforcing steel in tension under high strain rate. Materials & Design, 49, 657-666.
- Chaboche, J.L., 2008. A review of some plasticity and viscoplasticity constitutive theories. International journal of plasticity, 24(10), 1642-1693. doi:10.1016/j.ijplas.2008.03.009
- Danylenko, М.І., Podrezov, Yu.M., Firstov, S.A., 2015. The Influence of Strain Degree on the Structural Transformations and Mechanical Properties of the Low-Carbon Steel 20Kh. Lutsk: Inter-University Collection “NAUKOVY NOTATKI”, 49, 42-46.
- DBN V.1.2-14:2009 General principles for ensuring the reliability and structural safety of buildings, structures, building constructions, and foundations. Kyiv: Ministry of Regional Development and Construction of Ukraine, 2009. 43.
- DBN V.2.6-98:2009, 2011. Concrete and reinforced concrete structures. General design provisions. – Kyiv: Ministry of Regional Development, Construction, and Housing and Communal Services of Ukraine.
- Dmytrenko, Y., Genzerskiy, Y., Yakovenko, I., Bakulin, Y., 2023. Strength analysis of normal cross-sections of reinforced concrete structures in uniaxial bending by Wood-Armer method in LIRA SAPR software. AIP Conference Proceedings, 2678, 020006. DOI: 10.1063/5.0118680
- Dmytrenko, Y., Yakovenko, I., Fesenko, O., 2016. Strength of eccentrically tensioned reinforced concrete structures with small eccentricities by normal sections. Scientific Review Engineering and Environmental Sciences, 30(3), 424–438. DOI: 10.22630/PNIKS.2021.30.3.36
- Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290, 67–75. DOI: 10.1007/978-3-031-14141-6_7
- DSTU B V.2.6-156:2010, 2011. Building and civil engineering structures. Concrete and reinforced concrete structures made of heavy concrete. Design rules. – Kyiv: Ministry of Regional Development, Construction, and Housing and Communal Services of Ukraine.
- Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings. EN 1992-1-1:2004. – Brussels: CEN, 2004.
- Eurocode 2: Design of Concrete Structures – Part 2: Concrete Bridges – Design and Detailing Rules. EN 1992-2:2005. – Brussels: CEN, 2005.
- Eurocode EN 1990:2002, 2002, Basis of structural design. Brussels: European Committee for Standardization (CEN), 87.
- Gutierrez-Urrutia, I., Raabe, D., 2011. Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging. Acta materialia, 59(16), 6449-6462. doi:10.1016/j.actamat.2011.07.009
- Ho, J.C.M., Au, F.T.K., Kwan, A.K.H., 2005. Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams. Structural Engineering and Mechanics, 19(2), 185–198. doi:10.12989/sem.2005.19.2.185
- Hortigón Fuentes, B., Gallardo Fuentes, J.M., Nieto García, E.J., López, J.A., 2019. Strain hardening exponent and strain at maximum stress: Steel rebar case, Construction and Building Materials, 196, 175-184. doi:10.1016/j.conbuildmat.2018.11.082.
- Katunský, D., Katunská, J., Tóth, S., 2015. Possibility of choices industrial hall object reconstruction. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2(5), 389–396.
- Khmil, R., Blikharskyy, Z., Vegera, P., & Kopiika, N. 2023. Bearing capacity of reinforced concrete beams with and without damages of rebar. Production Engineering Archives, 29(3), 298–303. https://doi.org/10.30657/pea.2023.29.34
- Klym, A., Blikharskyy, Y., Gunka, V., Poliak, O., Selejdak, J., Blikharskyy, Z., 2025. An Overview of the Main Types of Damage and the Retrofitting of Reinforced Concrete Bridges. Sustainability, 2071-1050, 17(6). doi: 10.3390/su17062506
- Kopiika, N., Klym, A., Blikharskyy, Y., Katunský, D., Popovych, V., Blikharskyy, Z., 2024. Evaluation of the stress-strain state of the RC beam with the use of DIC. Production Engineering Archives, 30. doi: 10.30657/pea.2024.30.44
- Kos, Ž., Gotal Dmitrović, L., Klimenko, E., 2017. Developing a model of a strain (deformation) of a damaged reinforced concrete pillar in relation to a linear load capacity, Tehnički glasnik, 11(4), 150-154, https://hrcak.srce.hr/190990
- Koteš, P., Vavruš, M., Jošt, J., Prokop, J., 2020. Strengthening of concrete column by using the wrapper layer of fibre reinforced concrete, Materials, 13(23), 1-21, 5432, DOI: 10.3390/ma13235432
- Koteš, P., Vavruš, M., Raczkiewicz, W., 2022. Innovative strengthening of RC columns using a layer of a fibre reinforced concrete, Acta Polytechnica CTU Proceedings, 33, 309-315, DOI: 10.14311/APP.2022.33.0309
- Koteš, P., Zahuranec, M., Vavruš, M., 2023. Diagnostic and Design of Reconstruction of Building Váhostav, Lecture Notes in Civil Engineering, 322, 165-174, DOI: 10.1007/978-3-031-26879-3_13
- Lenkovskiy, T.M., Kulyk, V.V., Duriagina, Z.A., Kovalchuk, R.A., Topilnytskyy, V.H., Vira, V.V., Tepla, T.L., 2017. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Archives of Materials Science and Engineering, 84(1), 34–41. DOI: 10.5604/01.3001.0010.3029
- Lipiński, T., 2021. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Production Engineering Archives, 27(2), 108-111, DOI: 10.30657/pea.2021.27.13
- Lipiński, T., Wach, A., 2020. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace, Production Engineering Archives, 26(3), 88-91, DOI: 10.30657/pea.2020.26.18
- Malvar, L.J., 1998. Review of static and dynamic properties of steel reinforcing bars. Materials Journal, 95(5), 609-616.
- Nesterova, E.V., Bacroix, B., & Teodosiu, C., 2001. Experimental observation of microstructure evolution under strain-path changes in low-carbon IF steel. Materials Science and Engineering: A, 309, 495-499. doi:10.1016/S0921-5093(00)01639-7
- Ostash, O.P., Muravs’Kyi, L.I., Voronyak, T.I., Kmet’, A.B., Andreiko, I.M., Vira, V.V., 2011. Determination of the size of the fatigue prefracture zone by the method of phase-shifting interferometry. Materials Science, 46(6), 781–788. DOI: 10.1007/s11003-011-9353-1
- Phetlam, P., Uthaisangsuk, V., 2015. Microstructure based flow stress modeling for quenched and tempered low alloy steel. Materials & Design, 82, 189-199. doi:10.1016/j.matdes.2015.05.068
- Pietrzak, A., 2024. Effect of polypropylene fiber structure and length on selected properties of concrete. Construction of Optimized Energy Potential, 13(1), 78-88. DOI: 10.17512/bozpe.2024.13.09
- Robl, T., Hegele, P., Krempaszky, C., Werner, E., 2023. Residual Stresses in Ribbed Reinforcing Bars. Materials (Basel, Switzerland), 17(1), 26. doi:10.3390/ma17010026
- Russell, A.P., 2013. Strain Hardening of Reinforcement in Concrete Buildings during Earthquakes. Proceedings of the New Zealand Concrete Industry Conference, Queenstown, New Zealand, 3-5.
- Stechyshyn, M., Sanytskyy, M., Poznyak, O., 2015. Durability properties of high volume fly ash self-compacting fiber reinforced concretes. Eastern-European Journal of Enterprise Technologies, 2015, 3(11), pp. 49–53, DOI: 10.15587/1729-4061.2015.44246
- Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel, Y.F., Kovalov, M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading. IOP Conference Series: Materials Science and Engineering, 1002(1), 012007. DOI: 10.1088/1757-899X/1002/1/012007
- Zahuranec, M., Koteš, P., Kraľovanec, J., 2023. The Influence of the Prestressing Level of the Fully Threaded Anchor Bar on the Corrosion Rate, Buildings, 13(7), 1592, DOI: 10.3390/buildings13071592