References
- Djukic, M. B., Bakic, G. M., Zeravcic, V. S., Sedmak, A., Rajicic, B., 2019. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: Localized plasticity and decohesion, Engineering Fracture Mechanics, 216, 106528, DOI: 10.1016/j.engfracmech.2019.106528.
- Huang, L., Chen, D., Xie, D., Li, S., Zhang, Y., Zhu, T., Raabe, D., Ma, E., Li, J., Shan, Z., 2023. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron, Nature Materials, 22(6), 710–716, DOI: 10.1038/s41563-023-01537-w.
- Lynch, S., 2009. Comments on “A unified model of environment-assisted cracking”, Scripta Materialia, 61(3), 331–334, DOI: 10.1016/j.scriptamat.2009.02.031.
- Lynch, S., 1988. Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metallurgica, 36(10), 2639–2661, DOI: 10.1016/0001-6160(88)90113-7.
- Takagi, S., Toji, Y., 2012. Application of NH4SCN Aqueous Solution to Hydrogen Embrittlement Resistance Evaluation of Ultra-high Strength Steels, ISIJ International, 52(2), 329–331, DOI: 10.2355/isijinternational.52.329.
- Troiano, A. R., 2016. The role of hydrogen and other interstitials in the mechanical behavior of metals, Metallography Microstructure and Analysis, 5(6), 557–569, DOI: 10.1007/s13632-016-0319-4.
- Tunes, M. A., Uggowitzer, P. J., Dumitraschkewitz, P., Willenshofer, P., Samberger, S., Da Silva, F. C., Schön, C. G., Kremmer, T. M., Antrekowitsch, H., Djukic, M. B., Pogatscher, S., 2024. Limitations of hydrogen detection after 150 years of research on hydrogen embrittlement, Advanced Engineering Materials, Volume, Issue, page number, DOI: 10.1002/adem.202400776.