Have a personal or library account? Click to login
Bioactive Coatings and the Safety of Using Metal Implants Cover
Open Access
|Dec 2024

References

  1. Al-Harbi, N. et al., 2021. Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review, Pharmaceuticals, 14(2), 75, DOI: 10.3390/ph14020075.
  2. Bargavi, P. et al., 2022. Drug infused Al(2)O(3)-bioactive glass coatings toward the cure of orthopedic infection, Progress in biomaterials, 11(1), 79–94.
  3. Bellucci, D. and Cannillo, V., 2018. A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature, Materials Letters, 213, 67–70.
  4. Bogdanowicz, K.A. et al., 2023. A new look at imines and their mixture with PC71BM for organic, flexible photovoltaics. Scientific Reports, 13 (1), art. 13240, DOI: 10.1038/s41598-023-38978-x
  5. Bormann, T. et al., 2020. Corrosion Behavior of Surface-Treated Metallic Implant Materials, Materials, 13(9), DOI: 10.3390/ma13092011.
  6. Chouirfa, H. et al., 2019. Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomaterialia, 83, 37–54.
  7. Cunningham, B.W. et al., 2009. Bioactive titanium calcium phosphate coating for disc arthroplasty: analysis of 58 vertebral end plates after 6- to 12-month implantation, The Spine Journal, 9(10), 836–845, DOI: 10.1016/j.spinee.2009.04.015.
  8. Czerwińska, K. et al., 2020. Improving quality control of siluminial castings used in the automotive industry. METAL 2020 – 29th Int. Conf. Metall. Mater., 1382-1387, DOI: 10.37904/metal. 2020.3661
  9. Damiati, L. et al., 2018. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants, Journal of tissue engineering, 9, 2041731418790694.
  10. Davis, R. et al., 2022. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing, Int. J. Adv. Manuf. Technol., 120(3-4), 1473–1530.
  11. Drach, I. et al., 2021. Design Principles of Horizontal Drum Machines with Low Vibration. Adv. Sci. Technol. Res. J., 15 (2), 258-268, DOI: 10.12913/22998624/136441
  12. Dudek, A., 2009. Surface properties in titanium with hydroxyapatite coating. Optica Applicata, 39(4), 825-831.
  13. Dwornicka, R., Pietraszek, J., 2018. The outline of the expert system for the design of experiment. Prod. Eng. Arch., 20, 43-48, DOI: 10.30657/pea.2018.20.09
  14. Fernandes, H.R. et al., 2018. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering’, Materials, 11(12).
  15. Garcia-Mendez, M.C. et al., 2021. In Vitro Biocompatibility Evaluation of a New Co-Cr-B Alloy with Potential Biomedical Application, Metals, 11(8), 1267, DOI:10.3390/met11081267.
  16. Gomez-Vega, J.M. et al., 2000. Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing, Biomaterials, 21(2), 105–111.
  17. Goodman, S.B. et al., 2013. The future of biologic coatings for orthopaedic implants’, Biomaterials, 34(13), 3174–3183, DOI: 10.1016/j.biomaterials.2013.01.074.
  18. Jasiewicz, B. et al., 2021. Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment. Foot and Ankle Surgery, 27, 371-376, DOI: 10.1016/j.fas.2020.04.015
  19. Kaou, M.H. et al., 2023. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area, Nanomaterials (Basel, Switzerland), 13(16), 2287.
  20. Kędzia, O., Lubas, M. and Dudek, A., 2023. Glass and Glass-Ceramic Porous Materials for Biomedical Applications, System Safety: Human - Technical Facility - Environment, 5(1), 302–310, DOI:10.2478/czoto-2023-0033.
  21. Kravanja, K.A. and Finšgar, M., 2022. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients, Materials & Design, 217, 110653, DOI: 10.1016/j.matdes.2022.110653.
  22. Krysiak P. et al., 2020. Strength testing of a composite mounting frame for a multi-sensor detection system. Mater. Res. Proc., 17, 165-170, DOI: 10.21741/9781644901038-25
  23. Liang, J. et al., 2023. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies, Frontiers in bioengineering and biotechnology, 15(11), 1269223, DOI:10.3389/fbioe.2023.1269223.
  24. Mazur, K. et al. 2021. Mechanical behavior and morphological study of polytetrafluoroethylene (PTFE) composites under static and cyclic loading condition. Materials, 14(7), art. 1712, DOI: 10.3390/ma14071712
  25. Montazerian, M. and Zanotto, E., 2016. Bioactive Glass-ceramics: Processing, Properties and Applications, Bioactive Glasses: Fundamentals, Technology and Applications, 27–60.
  26. Mosas, K.K.A. et al., 2022. Recent Advancements in Materials and Coatings for Biomedical Implants, Gels (Basel, Switzerland), 8(5), 323 DOI:10.3390/gels8050323.
  27. Negut, I. et al., 2023. Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protection, Biomedicines, 11(10), 2772.
  28. Nguyen, N.H. et al., 2024. Engineering antibacterial bioceramics: Design principles and mechanisms of action, Materials Today Bio, 26, 101069.
  29. Nikolova, M.P. and Apostolova, M.D., 2022. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants, Materials (Basel, Switzerland), 16(1), 183.
  30. Nilawar, S., Uddin, M. and Chatterjee, K., 2021. Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments, Mater. Adv., 2(24), 7820–7841, DOI: 10.1039/D1MA00733E.
  31. Pawlowski, L., 2009. Suspension and solution thermal spray coatings. Surface Coatings Technology, 203, 2807–2829.
  32. Pawlikowska - Łagód, K. et al., 2016. Knowledge of women treated for osteoporosis on the general knowledge about the disease and its risk factors, Journal of Education, Health and Sport, 6(5), 255–265.
  33. Przybilla, P. et al., 2023. Effect of 20 μm thin ceramic coatings of hydroxyapatite, bioglass, GB14 and Beta-Tricalciumphosphate with copper on the biomechanical stability of femoral implants, Journal of the Mechanical Behaviour of Biomedical Materials, 144, 105951.
  34. Radek, M. et al., 2023. Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing. Materials Research Proceedings, 34, 453-459, DOI: 10.21741/9781644902691-52
  35. Radek, N., 2009. Determining the operational properties of steel beaters after electrospark deposition. Eksploatacja i Niezawodnosc, 44(4), 10-16.
  36. Radek, N., Antoszewski, B., 2009. The influence of laser treatment on the properties of electro-spark deposited coatings. Kovove Materialy, 4 (1), 31-38.
  37. Radek, N. et al., 2020. The influence of plasma cutting parameters on the geometric structure of cut surfaces. Mater. Res. Proc., 17, 132-137, DOI: 10.21741/9781644901038-20
  38. Radek, N. et al., 2021. Influence of laser texturing on tribological properties of DLC coatings. Prod. Eng. Arch. 27, 119-123, DOI: 10.30657/pea.2021.27.15
  39. Rau, J. V et al., 2016. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Materials Science and Engineering: C, 64, 362–369.
  40. Rios-Pimentel et al., 2023. A Short Review: Hydroxyapatite Coatings for Metallic Implants, Heat Treatment and Surface Engineering, 5(1).
  41. Saini, M. et al., 2015. Implant biomaterials: A comprehensive review., World journal of clinical cases, 3(1), 52–57, DOI: 10.12998/wjcc.v3.i1.52.
  42. Scendo, M. et al., 2012. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions. Corrosion Reviews, 30 (1-2), 33-45, DOI: 10.1515/CORRREV-2011-0039
  43. Scendo, M. et al., 2013. Influence of laser treatment on the corrosive resistance of WC-Cu coating produced by electrospark deposition. Int. J. Electrochem. Sci., 8(7), 9264-9277.
  44. Sergi, R., Bellucci, D. and Cannillo, V., 2020. A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives, Coatings, 10(8), 757.
  45. Su, Y. et al. 2019. Biofunctionalization of metallic implants by calcium phosphate coatings, Bioactive materials, 4, 196–206, DOI: 10.1016/j.bioactmat.2019.05.001.
  46. Ul Haq, I. and Krukiewicz, K., 2023. Antimicrobial approaches for medical implants coating to prevent implants associated infections: Insights to develop durable antimicrobial implants, Applied Surface Science Advances, 18, 100532, DOI: 10.1016/j.apsadv.2023.100532.
  47. Wojnar, L. et al., 2019. On the role of histomorphometric (stereological) microstructure parameters in the prediction of vertebrae compression strength. Image Analysis and Stereology, 38, 63-73, DOI: 10.5566/ias.2028
  48. Wrońska, A. et al., 2019. Effect of tool pin length on microstructure and mechanical strength of the FSW joints of Al 7075 metal sheets. Communications - Scientific Letters of the University of Žilina, 21 (3), 40-47.
  49. Xiao, D. et al., 2020. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved., Acta biomaterialia, 106, 22–33.
  50. Zhang, M. et al., 2019. In-vivo performance of plasma-sprayed CaO-MgO-SiO(2)-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration., Heliyon, 5(11), e02824.
Language: English
Page range: 227 - 238
Submitted on: Dec 5, 2024
Accepted on: Dec 10, 2024
Published on: Dec 31, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Olga Kędzia, Małgorzata Lubas, Agata Dudek, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.