References
- Al-Harbi, N. et al., 2021. Silica-Based Bioactive Glasses and Their Applications in Hard Tissue Regeneration: A Review, Pharmaceuticals, 14(2), 75, DOI: 10.3390/ph14020075.
- Bargavi, P. et al., 2022. Drug infused Al(2)O(3)-bioactive glass coatings toward the cure of orthopedic infection, Progress in biomaterials, 11(1), 79–94.
- Bellucci, D. and Cannillo, V., 2018. A novel bioactive glass containing strontium and magnesium with ultra-high crystallization temperature, Materials Letters, 213, 67–70.
- Bogdanowicz, K.A. et al., 2023. A new look at imines and their mixture with PC71BM for organic, flexible photovoltaics. Scientific Reports, 13 (1), art. 13240, DOI: 10.1038/s41598-023-38978-x
- Bormann, T. et al., 2020. Corrosion Behavior of Surface-Treated Metallic Implant Materials, Materials, 13(9), DOI: 10.3390/ma13092011.
- Chouirfa, H. et al., 2019. Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomaterialia, 83, 37–54.
- Cunningham, B.W. et al., 2009. Bioactive titanium calcium phosphate coating for disc arthroplasty: analysis of 58 vertebral end plates after 6- to 12-month implantation, The Spine Journal, 9(10), 836–845, DOI: 10.1016/j.spinee.2009.04.015.
- Czerwińska, K. et al., 2020. Improving quality control of siluminial castings used in the automotive industry. METAL 2020 – 29th Int. Conf. Metall. Mater., 1382-1387, DOI: 10.37904/metal. 2020.3661
- Damiati, L. et al., 2018. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants, Journal of tissue engineering, 9, 2041731418790694.
- Davis, R. et al., 2022. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing, Int. J. Adv. Manuf. Technol., 120(3-4), 1473–1530.
- Drach, I. et al., 2021. Design Principles of Horizontal Drum Machines with Low Vibration. Adv. Sci. Technol. Res. J., 15 (2), 258-268, DOI: 10.12913/22998624/136441
- Dudek, A., 2009. Surface properties in titanium with hydroxyapatite coating. Optica Applicata, 39(4), 825-831.
- Dwornicka, R., Pietraszek, J., 2018. The outline of the expert system for the design of experiment. Prod. Eng. Arch., 20, 43-48, DOI: 10.30657/pea.2018.20.09
- Fernandes, H.R. et al., 2018. Bioactive Glasses and Glass-Ceramics for Healthcare Applications in Bone Regeneration and Tissue Engineering’, Materials, 11(12).
- Garcia-Mendez, M.C. et al., 2021. In Vitro Biocompatibility Evaluation of a New Co-Cr-B Alloy with Potential Biomedical Application, Metals, 11(8), 1267, DOI:10.3390/met11081267.
- Gomez-Vega, J.M. et al., 2000. Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing, Biomaterials, 21(2), 105–111.
- Goodman, S.B. et al., 2013. The future of biologic coatings for orthopaedic implants’, Biomaterials, 34(13), 3174–3183, DOI: 10.1016/j.biomaterials.2013.01.074.
- Jasiewicz, B. et al., 2021. Inter-observer and intra-observer reliability in the radiographic measurements of paediatric forefoot alignment. Foot and Ankle Surgery, 27, 371-376, DOI: 10.1016/j.fas.2020.04.015
- Kaou, M.H. et al., 2023. Advanced Bioactive Glasses: The Newest Achievements and Breakthroughs in the Area, Nanomaterials (Basel, Switzerland), 13(16), 2287.
- Kędzia, O., Lubas, M. and Dudek, A., 2023. Glass and Glass-Ceramic Porous Materials for Biomedical Applications, System Safety: Human - Technical Facility - Environment, 5(1), 302–310, DOI:10.2478/czoto-2023-0033.
- Kravanja, K.A. and Finšgar, M., 2022. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients, Materials & Design, 217, 110653, DOI: 10.1016/j.matdes.2022.110653.
- Krysiak P. et al., 2020. Strength testing of a composite mounting frame for a multi-sensor detection system. Mater. Res. Proc., 17, 165-170, DOI: 10.21741/9781644901038-25
- Liang, J. et al., 2023. Modification of titanium orthopedic implants with bioactive glass: a systematic review of in vivo and in vitro studies, Frontiers in bioengineering and biotechnology, 15(11), 1269223, DOI:10.3389/fbioe.2023.1269223.
- Mazur, K. et al. 2021. Mechanical behavior and morphological study of polytetrafluoroethylene (PTFE) composites under static and cyclic loading condition. Materials, 14(7), art. 1712, DOI: 10.3390/ma14071712
- Montazerian, M. and Zanotto, E., 2016. Bioactive Glass-ceramics: Processing, Properties and Applications, Bioactive Glasses: Fundamentals, Technology and Applications, 27–60.
- Mosas, K.K.A. et al., 2022. Recent Advancements in Materials and Coatings for Biomedical Implants, Gels (Basel, Switzerland), 8(5), 323 DOI:10.3390/gels8050323.
- Negut, I. et al., 2023. Bioglass and Vitamin D3 Coatings for Titanium Implants: Osseointegration and Corrosion Protection, Biomedicines, 11(10), 2772.
- Nguyen, N.H. et al., 2024. Engineering antibacterial bioceramics: Design principles and mechanisms of action, Materials Today Bio, 26, 101069.
- Nikolova, M.P. and Apostolova, M.D., 2022. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants, Materials (Basel, Switzerland), 16(1), 183.
- Nilawar, S., Uddin, M. and Chatterjee, K., 2021. Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments, Mater. Adv., 2(24), 7820–7841, DOI: 10.1039/D1MA00733E.
- Pawlowski, L., 2009. Suspension and solution thermal spray coatings. Surface Coatings Technology, 203, 2807–2829.
- Pawlikowska - Łagód, K. et al., 2016. Knowledge of women treated for osteoporosis on the general knowledge about the disease and its risk factors, Journal of Education, Health and Sport, 6(5), 255–265.
- Przybilla, P. et al., 2023. Effect of 20 μm thin ceramic coatings of hydroxyapatite, bioglass, GB14 and Beta-Tricalciumphosphate with copper on the biomechanical stability of femoral implants, Journal of the Mechanical Behaviour of Biomedical Materials, 144, 105951.
- Radek, M. et al., 2023. Matching Computational Tools to User Competence Levels in Education of Engineering Data Processing. Materials Research Proceedings, 34, 453-459, DOI: 10.21741/9781644902691-52
- Radek, N., 2009. Determining the operational properties of steel beaters after electrospark deposition. Eksploatacja i Niezawodnosc, 44(4), 10-16.
- Radek, N., Antoszewski, B., 2009. The influence of laser treatment on the properties of electro-spark deposited coatings. Kovove Materialy, 4 (1), 31-38.
- Radek, N. et al., 2020. The influence of plasma cutting parameters on the geometric structure of cut surfaces. Mater. Res. Proc., 17, 132-137, DOI: 10.21741/9781644901038-20
- Radek, N. et al., 2021. Influence of laser texturing on tribological properties of DLC coatings. Prod. Eng. Arch. 27, 119-123, DOI: 10.30657/pea.2021.27.15
- Rau, J. V et al., 2016. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications, Materials Science and Engineering: C, 64, 362–369.
- Rios-Pimentel et al., 2023. A Short Review: Hydroxyapatite Coatings for Metallic Implants, Heat Treatment and Surface Engineering, 5(1).
- Saini, M. et al., 2015. Implant biomaterials: A comprehensive review., World journal of clinical cases, 3(1), 52–57, DOI: 10.12998/wjcc.v3.i1.52.
- Scendo, M. et al., 2012. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions. Corrosion Reviews, 30 (1-2), 33-45, DOI: 10.1515/CORRREV-2011-0039
- Scendo, M. et al., 2013. Influence of laser treatment on the corrosive resistance of WC-Cu coating produced by electrospark deposition. Int. J. Electrochem. Sci., 8(7), 9264-9277.
- Sergi, R., Bellucci, D. and Cannillo, V., 2020. A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives, Coatings, 10(8), 757.
- Su, Y. et al. 2019. Biofunctionalization of metallic implants by calcium phosphate coatings, Bioactive materials, 4, 196–206, DOI: 10.1016/j.bioactmat.2019.05.001.
- Ul Haq, I. and Krukiewicz, K., 2023. Antimicrobial approaches for medical implants coating to prevent implants associated infections: Insights to develop durable antimicrobial implants, Applied Surface Science Advances, 18, 100532, DOI: 10.1016/j.apsadv.2023.100532.
- Wojnar, L. et al., 2019. On the role of histomorphometric (stereological) microstructure parameters in the prediction of vertebrae compression strength. Image Analysis and Stereology, 38, 63-73, DOI: 10.5566/ias.2028
- Wrońska, A. et al., 2019. Effect of tool pin length on microstructure and mechanical strength of the FSW joints of Al 7075 metal sheets. Communications - Scientific Letters of the University of Žilina, 21 (3), 40-47.
- Xiao, D. et al., 2020. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved., Acta biomaterialia, 106, 22–33.
- Zhang, M. et al., 2019. In-vivo performance of plasma-sprayed CaO-MgO-SiO(2)-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration., Heliyon, 5(11), e02824.