Have a personal or library account? Click to login
Flow Visualization of Flue Gases in Multi-Tube Electrostatic Precipitators Using CFD Simulations Cover

Flow Visualization of Flue Gases in Multi-Tube Electrostatic Precipitators Using CFD Simulations

Open Access
|Dec 2024

References

  1. Ahmadi, M., Berkhoff, A.P., De Boer, A., n.d. Computational Fluid Dynamics Approach to Evaluate Electrostatic Precipitator Performance.
  2. Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P., le Grange, L.A., Arif, A., 2016. CFD modeling of particle charging and collection in electrostatic precipitators. J Electrostat 84, 10–22, DOI: 10.1016/J.ELSTAT.2016.08.008
  3. Drga, J., Holubčík, M., Čajová Kantová, N., Červenka, B., 2022. Design of a Low-Cost Electrostatic Precipitator to Reduce Particulate Matter Emissions from Small Heat Sources. Energies 2022, Vol. 15, Page 4148 15, 4148, DOI: 10.3390/EN15114148
  4. Elbl, P., Sitek, T., Lachman, J., Lisý, M., Baláš, M., Pospíšil, J., 2022. Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution. Energy 256, 124680, DOI: 10.1016/J.ENERGY.2022.124680
  5. Eom, Y.S., Kang, D.H., Choi, D.H., 2019. Numerical analysis of PM2.5 particle collection efficiency of an electrostatic precipitator integrated with double skin façade in a residential home. Build Environ 162, 106245, DOI: 10.1016/J.BUILDENV.2019.106245
  6. Farnoosh, N., Adamiak, K., Castle, G.S.P., 2010. 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J Electrostat 68, 513–522, DOI: 10.1016/J.ELSTAT.2010.07.002
  7. Grigonytė-Lopez Rodriguez, J., Suhonen, H., Laitinen, A., Tissari, J., Kortelainen, M., Tiitta, P., Lähde, A., Keskinen, J., Jokiniemi, J., Sippula, O., 2020. A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers. Renew Energy 145, 521–529, DOI: 10.1016/J.RENENE.2019.06.052
  8. Guo, B., Yu, A., Guo, J., 2015. Numerical Modelling of ESP for Design Optimization. Procedia Eng 102, 1366–1372, DOI: 10.1016/J.PROENG.2015.01.268
  9. Høgh Petersen, H., 1988. Performance Of Electrostatic Precipitators. Top Catal 4, 21–31, DOI: 10.1016/B978-0-12-207690-9.50007-6
  10. Holubčík, M., Kantová, N.Č., Trnka, J., Jandačka, J., 2022. Decreasing Solid Aerosols from Small Heat Sources Using the Optimized Electrostatic Precipitator. Atmosphere 2022, 13, 1438, DOI: 10.3390/ATMOS13091438
  11. Holubčík, M., Trnka, J., Čajová Kantová, N., 2024. Using heat exchanger for construction of electrostatic precipitator in a small heat source. J Electrostat 128, 103884, DOI: 10.1016/J.ELSTAT.2023.103884
  12. Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A., Czech, T., 2024. Recent advances in electrostatic precipitation of particles from flue gases generated by domestic heating appliances. A brief outlook. J Electrostat 129, 103922, DOI: 10.1016/J.ELSTAT.2024.103922
  13. Jaworek, A., Sobczyk, A.T., Marchewicz, A., Krupa, A., Czech, T., 2021. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renewable and Sustainable Energy Reviews 137, 110446, DOI: 10.1016/J.RSER. 2020.110446
  14. Kantová, N.Č., Čaja, A., Patsch, M., Holubčík, M., Ďurčanský, P., 2021. Dependence of the Flue Gas Flow on the Setting of the Separation Baffle in the Flue Gas Tract. Applied Sciences 2021, Vol. 11, Page 2961 11, 2961, DOI: 10.3390/APP11072961
  15. Lasek, J.A., Matuszek, K., Hrycko, P., Piechaczek, M., 2018. Adaptation of hard coal with high sinterability for solid fuel boilers in residential heating systems. Fuel 215, 239–248, DOI: 10.1016/J.FUEL.2017.11.020
  16. Li, S., Huang, Y., Zheng, Q., Deng, G., Yan, K., 2019. A numerical model for predicting particle collection efficiency of electrostatic precipitators. Powder Technol 347, 170–178, DOI: 10.1016/J.POWTEC.2019.02.040
  17. Lim, M.T., Phan, A., Roddy, D., Harvey, A., 2015. Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review. Renewable and Sustainable Energy Reviews 49, 574–584, DOI: 10.1016/J.RSER.2015.04.090
  18. Long, Z., Yao, Q., 2010. Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J Aerosol Sci 41, 702–718, DOI: 10.1016/J.JAEROSCI.2010.04.005
  19. Mizuno, A., 2000. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation 7, 615–624, DOI: 10.1109/94.879357
  20. Molchanov, O., Krpec, K., Horák, J., 2020. Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units. J Clean Prod 246, 119022, DOI: 10.1016/J.JCLEPRO.2019.119022
  21. Singh, K., Tripathi, D., Singh, K., Tripathi, D., 2021. Particulate Matter and Human Health. Environmental Health, DOI: 10.5772/INTECHOPEN.100550
  22. Skodras, G., Kaldis, S.P., Sofialidis, D., Faltsi, O., Grammelis, P., Sakellaropoulos, G.P., 2006. Particulate removal via electrostatic precipitators — CFD simulation. Fuel Processing Technology 87, 623–631, DOI: 10.1016/J.FUPROC.2006.01.012
  23. STN EN 13240 (06 1206) 1.12.2002 | Technická norma | NORMSERVIS s.r.o. [WWW Document], n.d. URL https://eshop.normservis.sk/norma/stnen-13240-1.12.2002.html (accessed 10.25.24).
Language: English
Page range: 201 - 208
Submitted on: Nov 26, 2024
Accepted on: Dec 16, 2024
Published on: Dec 31, 2024
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2024 Nikola Čajová Kantová, Alexander Backa, Pavol Belány, Alexander Čaja, Jozef Jandačka, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.