References
- Ahmadi, M., Berkhoff, A.P., De Boer, A., n.d. Computational Fluid Dynamics Approach to Evaluate Electrostatic Precipitator Performance.
- Arif, S., Branken, D.J., Everson, R.C., Neomagus, H.W.J.P., le Grange, L.A., Arif, A., 2016. CFD modeling of particle charging and collection in electrostatic precipitators. J Electrostat 84, 10–22, DOI: 10.1016/J.ELSTAT.2016.08.008
- Drga, J., Holubčík, M., Čajová Kantová, N., Červenka, B., 2022. Design of a Low-Cost Electrostatic Precipitator to Reduce Particulate Matter Emissions from Small Heat Sources. Energies 2022, Vol. 15, Page 4148 15, 4148, DOI: 10.3390/EN15114148
- Elbl, P., Sitek, T., Lachman, J., Lisý, M., Baláš, M., Pospíšil, J., 2022. Sewage sludge and wood sawdust co-firing: Gaseous emissions and particulate matter size distribution. Energy 256, 124680, DOI: 10.1016/J.ENERGY.2022.124680
- Eom, Y.S., Kang, D.H., Choi, D.H., 2019. Numerical analysis of PM2.5 particle collection efficiency of an electrostatic precipitator integrated with double skin façade in a residential home. Build Environ 162, 106245, DOI: 10.1016/J.BUILDENV.2019.106245
- Farnoosh, N., Adamiak, K., Castle, G.S.P., 2010. 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J Electrostat 68, 513–522, DOI: 10.1016/J.ELSTAT.2010.07.002
- Grigonytė-Lopez Rodriguez, J., Suhonen, H., Laitinen, A., Tissari, J., Kortelainen, M., Tiitta, P., Lähde, A., Keskinen, J., Jokiniemi, J., Sippula, O., 2020. A novel electrical charging condensing heat exchanger for efficient particle emission reduction in small wood boilers. Renew Energy 145, 521–529, DOI: 10.1016/J.RENENE.2019.06.052
- Guo, B., Yu, A., Guo, J., 2015. Numerical Modelling of ESP for Design Optimization. Procedia Eng 102, 1366–1372, DOI: 10.1016/J.PROENG.2015.01.268
- Høgh Petersen, H., 1988. Performance Of Electrostatic Precipitators. Top Catal 4, 21–31, DOI: 10.1016/B978-0-12-207690-9.50007-6
- Holubčík, M., Kantová, N.Č., Trnka, J., Jandačka, J., 2022. Decreasing Solid Aerosols from Small Heat Sources Using the Optimized Electrostatic Precipitator. Atmosphere 2022, 13, 1438, DOI: 10.3390/ATMOS13091438
- Holubčík, M., Trnka, J., Čajová Kantová, N., 2024. Using heat exchanger for construction of electrostatic precipitator in a small heat source. J Electrostat 128, 103884, DOI: 10.1016/J.ELSTAT.2023.103884
- Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A., Czech, T., 2024. Recent advances in electrostatic precipitation of particles from flue gases generated by domestic heating appliances. A brief outlook. J Electrostat 129, 103922, DOI: 10.1016/J.ELSTAT.2024.103922
- Jaworek, A., Sobczyk, A.T., Marchewicz, A., Krupa, A., Czech, T., 2021. Particulate matter emission control from small residential boilers after biomass combustion. A review. Renewable and Sustainable Energy Reviews 137, 110446, DOI: 10.1016/J.RSER. 2020.110446
- Kantová, N.Č., Čaja, A., Patsch, M., Holubčík, M., Ďurčanský, P., 2021. Dependence of the Flue Gas Flow on the Setting of the Separation Baffle in the Flue Gas Tract. Applied Sciences 2021, Vol. 11, Page 2961 11, 2961, DOI: 10.3390/APP11072961
- Lasek, J.A., Matuszek, K., Hrycko, P., Piechaczek, M., 2018. Adaptation of hard coal with high sinterability for solid fuel boilers in residential heating systems. Fuel 215, 239–248, DOI: 10.1016/J.FUEL.2017.11.020
- Li, S., Huang, Y., Zheng, Q., Deng, G., Yan, K., 2019. A numerical model for predicting particle collection efficiency of electrostatic precipitators. Powder Technol 347, 170–178, DOI: 10.1016/J.POWTEC.2019.02.040
- Lim, M.T., Phan, A., Roddy, D., Harvey, A., 2015. Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review. Renewable and Sustainable Energy Reviews 49, 574–584, DOI: 10.1016/J.RSER.2015.04.090
- Long, Z., Yao, Q., 2010. Evaluation of various particle charging models for simulating particle dynamics in electrostatic precipitators. J Aerosol Sci 41, 702–718, DOI: 10.1016/J.JAEROSCI.2010.04.005
- Mizuno, A., 2000. Electrostatic precipitation. IEEE Transactions on Dielectrics and Electrical Insulation 7, 615–624, DOI: 10.1109/94.879357
- Molchanov, O., Krpec, K., Horák, J., 2020. Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units. J Clean Prod 246, 119022, DOI: 10.1016/J.JCLEPRO.2019.119022
- Singh, K., Tripathi, D., Singh, K., Tripathi, D., 2021. Particulate Matter and Human Health. Environmental Health, DOI: 10.5772/INTECHOPEN.100550
- Skodras, G., Kaldis, S.P., Sofialidis, D., Faltsi, O., Grammelis, P., Sakellaropoulos, G.P., 2006. Particulate removal via electrostatic precipitators — CFD simulation. Fuel Processing Technology 87, 623–631, DOI: 10.1016/J.FUPROC.2006.01.012
- STN EN 13240 (06 1206) 1.12.2002 | Technická norma | NORMSERVIS s.r.o. [WWW Document], n.d. URL https://eshop.normservis.sk/norma/stnen-13240-1.12.2002.html (accessed 10.25.24).