References
- Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates, Construction and Building Materials, 54, 210-223.
- Czajkowska, A., Raczkiewicz, W., Ingaldi, M. 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Production Engineering Archives, 29(3), 288-297, DOI: 10.30657/pea.2023.29.33
- Cardoso, W., di Felice, R., Baptista, R.C., Machado, T.A.P., de Sousa Galdino, A.G., 2022. Evaluation of the use of blast furnace slag as an additive in mortars, REM, Int. Eng. J., Ouro Preto, 75(3), 215-224
- Dębska B., Krasoń J., Lichołai L., 2020. The evaluation of the possible utilization of waste glass in sustainable mortars, Construction of Optimized Energy Potential, vol. 9 (2), 7-15, DOI: 10.17512/bozpe.2020.2.01
- Francois, D., Criado, C., 2007. Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator, Journal of Hazardous Materials, 2007, 543-549
- Gu, L., Ozbakkaloglu, T., 2016. Use of recycled plastics in concrete: A critical review, Waste Management., 51, 19–42
- Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate, Construction and Building Materials, 48, 295–305
- Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136 DOI: 10.17512/bozpe.2019.1.14
- Jura, J., 2020. Influence of Type of Biomass Burned on the Properties of Cement Mortar Containing Fly Ash, Construction of Optimized Energy Potential, 9(1), 77-82
- Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708, DOI: 10.3390/ma14216708
- Jura, J., 2023. Influence of Waste Ashes from Biomass Combustion on Frost Resistance of Cement Mortars, Scientific Journals of the Maritime University of Szczecin, 75(147), 35-41
- Kalak, T., Szypura, P., Cierpiszewski, R., Ulewicz, M., 2023. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials, 16, 4043, DOI: 10.3390/ma16114043
- Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J.R., Fernandez-Rodriguez, J.M., Suescum Morales, D., 2022. The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials, 15, 1438.
- Martinez-Molina, W., Chavez-Garcia, H.L., Perez-Lopez, T., Alonso-Guzman, E.M., Arreola-Sanchez, M., Navarrete-Seras, M.A., Borrego-Perez, J.A., Sanchez-Calvillo, A., Guzman-Torres, J.A., Perez-Quiroz, J.T., 2021. Effect of the Addition of Agribusiness and Industrial Wastes as a Partial Substitution of Portland Cement for the Carbonation of Mortars. Materials, 14, 7276
- Muradyan, N.G., Arzumanyan, A.A., Kalantaryan, M.A., Vardanyan, Y.V., Yeranosyan, M., Ulewicz, M., Laroze, D., Barseghyan, M.G., 2023. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method. Materials 2023, 16, 5516, DOI: 10.3390/ma16165516
- Pietrzak, A., 2019. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of Optimized Energy Potential, 8(1), 29–35, DOI: 10.17512/bozpe.2019.1.03
- Popławski, J., Lelusz, M., 2023. Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites. Applied Sciences, 13, 1659.
- Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential, 9(1), 89-96, DOI: 10.17512/bozpe.2020.1.11
- Pribulov’a. A., Futas. P., Baricova, D., 2016. Processing and utilization of metallurgical slags, Production Engineering Archives, 11/2, 2–5
- PN-EN 197-1 Cement – część 1. Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku
- PN-EN 1015-3 Metody badań zapraw do murów
- PN-EN 196-1:2016-7 Metody badania cementu - Część 1: Oznaczanie wytrzymałości
- Rashad, A.M., 2016. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials, International Journal of Sustainable Built Environment, 5, 46–82.
- Sharma, R., Bansal, P.P., 2016. Use of different forms of waste plastic in concrete—A review, Journal of Cleaner Production, 112, 473–482
- Šadzevičius R., Gurskis V., Ramukevičius D., 2023. Research on the properties of concrete with hemp shives, Construction of Optimized Energy Potential (CoOEP), 12, 25-32, DOI: 10.17512/bozpe.2023.12.03
- Tavakoli, D., Hashempour, M., Heidari, A., 2018. Use of Waste Materials in Concrete: A review, Pertanika Journal of Science & Technology, 26, 499–522
- Ulewicz, M., Jura J., 2017. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, DOI: 10.1051/e3sconf/20171801029.
- Ulewicz, M.; Halbiniak, J. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochem. Probl. Miner. Process. 2016, 52, 1002–1010.
- Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872
- Ulewicz, M., Pietrzak, A., 2023. Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties, Materials, 16, 2231
- Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash, Procedia Engineering, 108, 453 – 458
- Wielgosiński G., Wasiak D., 2015. Wtórne odpady z procesu spalania odpadów, Nowa Energia, 45-56.
- Wielgosiński G., 2016. Termiczne przekształcanie odpadów komunalnych - wybrane zagadnienia, Wydawnictwo „Nowa Energia”, Racibórz
- https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochronasrodowiska-w-2022-roku,12,6.html