Alterary, S.S, Marei, N.H., 2021. Fly ash properties, characterization, and applications: A review, Journal of King Saud University - Science, 33, 101536, DOI: 10.1016/j.jksus.2021.101536.
Bassam, I. A., Tayeh, A., Alyousef, R., Alabduljabbar, H., Mohamed, A.M., Alaskar, A., 2020. Use of recycled plastic as fine aggregate in cementitious composites: A review, Construction and Building Materials, 253, 119146
Brachaczek, W., Chleboś, A., Kupczak, M., Spisak, S., Stybak, M., Żyrek, K., 2023. Influence of the Addition of Ground Granulated Blast Furnace Slag, Fly Silica Ash and Limestone on Selected Properties of Cement Mortars. Materials Proceedings, 13, 32, DOI:10.3390/materproc2023013032.
Cardoso, W., di Felice, R., Baptista, R.C., Machado, T.A.P., de Sousa Galdino, A.G., 2022. Evaluation of the use of blast furnace slag as an additive in mortars, REM - International Engineering Journal, 75(3), 2022, 215-224.
Dębska, B., Krasoń, J., Lichołai, L., 2020. The evaluation of the possible utilization of waste glass in sustainable mortars, Construction of Optimized Energy Potential (CoOEP), 9, 2, 7-15, DOI: 10.17512/bozpe.2020.2.01
Fan, W.J., Wang, X.Y., Park, K.B., 2015. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete, Materials, 8(9), 5933-5952.
Farinha, C., de Brito J., Veiga, R., 2015. Incorporation of fine sanitary ware aggregates in coating mortars, Construction and Building Materials, 83, 194-206.
Gautam, L., Jain, J.K., Kalla P., Choudhary, S., 2021. A review on the utilization of ceramic waste in sustainable construction products, Materials Today, 43, 1884-1891.
Huang Q. Zhao, L., 2019. Correlation between compressive strengths and water absorption of fly ash cement mortar immersed in water, Civil Engineering and Architecture, LXV(3), 141-152.
Jura, J., 2020. Influence of Type of Biomass Burned on the Properties of Cement Mortar Containing Fly Ash, Construction of Optimized Energy Potential, 9 (1), 77-82.
Jura, J., 2023. Influence of Waste Ashes from Biomass Combustion on Frost Resistance of Cement Mortars, Scientific Journals of the Maritime University of Szczecin, nr 75, 147, 35-41.
Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708. https://doi.org/10.3390/ma14216708.
Kalak, T., Szypura, P., Cierpiszewski R., Ulewicz, M., 2023. Modification of Concrete Composition Doped by Sewage Sludge Fly Ash and Its Effect on Compressive Strength, Materials, 16, 4043, DOI: https://doi.org/10.3390/ma16114043
Kalinowska-Wichrowska, K., Pawluczuk, E., Bołtryk, M., Jimenez, J.R., Fernandez-Rodriguez, J.M., Suescum Morales, D., 2022. The Performance of Concrete Made with Secondary Products - Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix, Materials, 15, 1438.
Krynke, M., 2021. Management optimizing the costs and duration time of the process in the production system, Production Engineering Archives, 27, 3, 2021, 163-170. DOI: 10.30657/pea.2021.27.21
Kurda, R., de Brito, J., Silvestre, J.D., 2017. Combined influence of recycled concrete aggregates and high contents of fly ash on concrete properties, Construction and Building Materials, 157, 554–572.
Lee, S.Y., Le, H.V., Kim, D.J., 2019. Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress, Construction and Building Materials, 220, 149–160.
Lehner, P., Horňáková, M., Pizoń, J., Gołaszewski, J., 2022. Effect of Chemical Admixtures on Mechanical and Degradation Properties of Metallurgical Sludge Waste Concrete, Materials, 15, 8287, DOI: 10.3390/ma15238287.
Lis, T., Nowacki, K., 2022. Pro-ecological possibilities of using metallurgical waste in the production of aggregates, Production Engineering Archives, 28, 3, 252-256, DOI:10.30657/pea.2022.28.31.
Muradyan, N.G., Arzumanyan, A.A., Kalantaryan, M.A., Vardanyan, Y.V., Yeranosyan, M., Ulewicz, M., Laroze, D., Barseghyan, M.G., 2023. The Use of Biosilica to Increase the Compressive Strength of Cement Mortar: The Effect of the Mixing Method, Materials, 16, 5516. DOI: 10.3390/ma16165516
Nayana, A.M., Rakesh, P., 2021. Strength and durability study on cement mortar with ceramic waste and micro-silica, Materials Today: Proceedings, 5(11), 24780 24791.
Nazer, A.S., Pavez, O., Rojas, F., 2021. Use of copper slag in cement mortar, REM: R. Escola de Minas, Ouro Preto, 65(1), 2012, 87-91. DOI:10.1590/S0370-44672012000100012.
Pietrzak, A., 2018. Assessment of the impact of recycling from pet bottles in selected concrete properties, Construction of optimized energy potential, 7(1), 51–56, DOI: 10.17512/bozpe.2018.1.07.
Pietrzak, A.. 2019. The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete, Construction of optimized energy potential, 8(1), 29–35, DOI: 10.17512/bozpe.2019.1.03.
Pietrzak, A., Ulewicz, M., 2023. Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties, Materials, 16(6), DOI: 10.3390/ma16062231.
Popławski J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), 9, 1, 89-96, DOI: 10.17512/bozpe.2020.1.11.
Popławski, J.; Lelusz, M., 2023. Assessment of Sieving as a Mean to Increase Utilization Rate of Biomass Fly Ash in Cement-Based Composites, Applied Sciences 2023, 13, 1659.
Rashad, A.M., 2014. A Brief Review on Blast-Furnace Slag and Copper Slag as Fine Aggregate in Mortar and Concrete Based on Portland Cement, Reviews on Advanced Materials Science, 44, 221-237.
Rashad, A.M., 2022. Behavior of steel slag aggregate in mortar and concrete - A comprehensive overview, Journal of Building Engineering, 53, 104536, DOI:10.1016/j.jobe.2022.104536.
Ray, S., Haque, M., Sakib, M. N., Mita, A.F., Rahman, M.D.M., Tanmoy, B.B., 2021. Use of ceramic wastes as aggregates in concrete production. A review, Journal of Building Engineering, 43, 102567.
Rooholamini, H., Sedghi, R., Ghobadipour, B., Adresi, M., 2019. Effect of electric arc furnace steel slag on the mechanical and fracture properties of roller-compacted concrete, Construction and Building Materials, 211, 88–98.
Saikia, N., de Brito, J., 2012. Use of plastic waste as aggregate in cement mortar and concrete preparation: A review, Construction and Building Materials, 34, 385–401.
Šadzevičius, R., Gurskis V., Ramukevičius, D., 2023. Research on the properties of concrete with hemp shives, Construction of Optimized Energy Potential, 12, 25-32, DOI: 10.17512/bozpe.2023.12.03.
Santamaría, A., Gonzalez, J., Losanez, M., Skaf, M., Ortega-Lopez, V., 2020. The design of self-compacting structural mortar containing steelmaking slags as aggregate, Cement and Concrete Composites, 111, 103627.
Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing, 52(2), 1002−1010, DOI: 10.5277/ppmp160237.
Ulewicz, M., Jura J., 2017. Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar, E3S Web of Conferences 18, 01029, DOI: 10.1051/e3sconf/20171801029.
Ulewicz, M., Pietrzak, A., 2021. Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats, Materials, 14(4), DOI: 10.3390/ma14040872.
Ulewicz, M., Pietrzak, A., 2023. Influence of Post-Consumer Waste Thermoplastic Elastomers Obtained from Used Car Floor Mats on Concrete Properties, Materials, 16, 2231.
Yerramala, A., Chandurdu, R., and Desai, B., 2012. Influence of fly ash replacement on strength properties of cement mortar, International Journal of Engineering, Science and Technology (IJEST), 4, 3657-3665.