Have a personal or library account? Click to login
Crack Resistance of RC Columns Strengthened By CFRP Under 30% of Uls Loading Cover

Crack Resistance of RC Columns Strengthened By CFRP Under 30% of Uls Loading

Open Access
|Dec 2023

References

  1. Andriichuk, O., Yasiuk, I., Uzhehov, S., Palyvoda, O., 2021. Experimental Research of Strength Characteristics of Steel Fiber Reinforced Concrete Gutters and Modeling of Their Work Using the Finite Element Method, Lecture Notes in Civil Engineering, 100, 1–8, DOI: 10.1007/978-3-030-57340-9_1
  2. Benzaid, R., Mesbah, H. A., 2013. Strength model for square concrete columns confined by external CFRP sheets, Structural Engineering and Mechanics, 46(1), 111-135, DOI: 10.12989/sem.2013.46.1.111
  3. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021a. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conf. Ser. Mater. Sci. Eng., 1021, 012012, DOI: 10.1088/1757-899X/1021/1/012012
  4. Blikharskyy, Y., Selejdak, J., Bobalo, T., Khmil, R., Volynets, M., 2021b. Influence of the percentage of reinforcement by unstressed rebar on the deformability of pre-stressed RC beams. Production Engineering Archives, 27(3), 212–216, DOI: 10.30657/pea.2021.27.28
  5. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021c. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646, DOI: 10.1016/j.cscm.2021.e00646
  6. Blikharskyy, Z., Selejdak, J., Blikharskyy, Y., Khmil, R., 2019. Corrosion of Reinforce Bars in RC Constructions, System Safety: Human - Technical Facility – Environment, 1(1), 277-283, DOI: 10.2478/czoto-2019-0036
  7. Blikharskyy, Z., Sobol, K., Markiv, T., Selejdak, J., 2021d. Properties of Concretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638, DOI: 10.3390/ma14102638
  8. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system, Matec Web of Conferences, 183, 02009, DOI: 10.1051/matecconf/201818302009
  9. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2021. Influence of the Percentage of Reinforcement on the Compressive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. Lecture Notes in Civil Engineering, 2021, 100, 53–62, DOI: 10.1007/978-3-030-57340-9_7
  10. Czajkowska, A., Raczkiewicz, W., Ingaldi, M., 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies, Production Engineering Archives, 29(3), 288-297. DOI: 10.30657/pea.2023.29.33
  11. Dmytrenko, Y., Genzerskiy, Y., Yakovenko, I., Bakulin, Y., 2023. Strength analysis of normal cross-sections of reinforced concrete structures in uniaxial bending by Wood-Armer method in LIRA SAPR software. AIP Conference Proceedings, 2678, 020006, DOI: 10.1063/5.0118680
  12. Dmytrenko, Y., Yakovenko, I., Fesenko, O.. 2016. Strength of eccentrically tensioned reinforced concrete structures with small eccentricities by normal sections. Scientific Review Engineering and Environmental Sciences, 30(3), 424–438, DOI: 10.22630/PNIKS.2021.30.3.36
  13. Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290, 67–75, DOI: 10.1007/978-3-031-14141-6_7
  14. Gajdosova, K., Bilcik, J., 2013. Full-Scale Testing of CFRP-Strengthened Slender Reinforced Concrete Columns, Journal of Composites for Construction, 17(2), 239-248, DOI: 10.1061/(ASCE)CC.1943-5614.0000329
  15. Hadi, M. N. S., 2010. Behaviour of Reinforced Concrete Columns Wrapped with Fibre Reinforced Polymer Under Eccentric Loads, Australian Journal of Structural Engineering, 10(2), 169-178, DOI: 10.1080/13287982.2010.11465042
  16. Helbrych, P., 2021. Effect of dosing with propylene fibers on the mechanical properties of concretes, Construction of Optimized Energy Potential (CoOEP), 10(2), 39-44, DOI: 10.17512/bozpe.2021.2.05
  17. Ilnytskyy, B.M., Kramarchuk, A.P., Bula, S.S., Bobalo, T.V., 2019. Study of the vibration influence on load-bearing floor structures in case of machinery operation. IOP Conference Series: Materials Science and Engineering, 708(1), 012052, DOI: 10.1088/1757-899X/708/1/012052
  18. Katunský, D., Katunská, J., Tóth, S., 2015. Possibility of choices industrial hall object reconstruction. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2(5), 389–396.
  19. Khmil, R. Ye., Tytarenko, R. Yu., Blikharskyy, Ya. Z., Vegera, P. I., 2021. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load, IOP Conference Series: Materials Science and Engineering, 1021(1), 012014, DOI: 10.1088/1757-899X/1021/1/012014
  20. Kobaka, J., Katzer, J., 2022. A principal component analysis in concrete design, Construction of Optimized Energy Potential (CoOEP), 11, 203-214, DOI: 10.17512/bozpe.2022.11.23
  21. Kolchunov Vl.I., Yakovenko I.A., 2016. About the violation solid effect of reinforced concrete in reconstruction design of textile industry enterprises. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Teknologiya Tekstil'noi Promyshlennosti, 3(363), 258–263.
  22. Kos, Ž., Gotal Dmitrović, L., Klimenko, E., 2017. Developing a model of a strain (deformation) of a damaged reinforced concrete pillar in relation to a linear load capacity, Tehnički glasnik, 11(4), 150-154, https://hrcak.srce.hr/190990
  23. Koteš, P., Vavruš, M., Jošt, J., Prokop, J., 2020. Strengthening of concrete column by using the wrapper layer of fibre reinforced concrete, Materials, 13(23), 1-21, 5432, DOI: 10.3390/ma13235432
  24. Koteš, P., Vavruš, M., Raczkiewicz, W., 2022. Innovative strengthening of RC columns using a layer of a fibre reinforced concrete, Acta Polytechnica CTU Proceedings, 33, 309-315, DOI: 10.14311/APP.2022.33.0309
  25. Koteš, P., Zahuranec, M., Vavruš, M., 2023. Diagnostic and Design of Reconstruction of Building Váhostav, Lecture Notes in Civil Engineering, 322, 165-174, DOI: 10.1007/978-3-031-26879-3_13
  26. Krainskyi, P., Blikharskyy, Y., Khmil, R., Vegera, P., 2020. Crack Resistance of RC Columns Strengthened by Jacketing, Lecture Notes in Civil Engineering, 47, 195-201, DOI: 10.1007/978-3-030-27011-7_25
  27. Krynke, M., 2019. Managing the tasks of employees in the construction industry, Construction of optimized energy potential, 8(1), 137-145, DOI: 10.17512/bozpe.2019.1.15
  28. Lenkovskiy, T.M., Kulyk, V.V., Duriagina, Z.A., Kovalchuk, R.A., Topilnytskyy, V.H., Vira, V.V., Tepla, T.L., 2017. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Archives of Materials Science and Engineering, 84(1), 34–41, DOI: 10.5604/01.3001.0010.3029
  29. Lipiński, T., 2021. Investigation of corrosion rate of X55CrMo14 stainless steel at 65% nitrate acid at 348 K, Production Engineering Archives, 27(2), 108-111, DOI: 10.30657/pea.2021.27.13
  30. Lipiński, T., Wach, A., 2020. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric furnace, Production Engineering Archives, 26(3), 88-91, DOI: 10.30657/pea.2020.26.18
  31. Nikolić, R.R., Djoković, J.M., Hadzima, B., Ulewicz, R. (2020), Spot-Weld Service Life Estimate Based on Application of the Interfacial Crack Concept. Materials, 13, 2976. 10.3390/ma13132976
  32. Ostash, O.P., Muravs'Kyi, L.I., Voronyak, T.I., Kmet', A.B., Andreiko, I.M., Vira, V.V., 2011. Determination of the size of the fatigue prefracture zone by the method of phaseshifting interferometry. Materials Science, 46(6), 781–788, DOI: 10.1007/s11003-011-9353-1
  33. Pham, T. M., Doan, L. V., Hadi, M. N. S., 2013. Strengthening square reinforced concrete columns by circularisation and FRP confinement, Construction and Building Materials, 49, 490-499, DOI: 10.1016/j.conbuildmat.2013.08.082
  34. Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal fly-ash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), 9(1), 89-96, DOI: https://bozpe.pcz.pl/archives/1-2020/bozpe2020111
  35. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z., 2020. Calculation of Reinforced Concrete Columns Strengthened by CFRP, Lecture Notes in Civil Engineering, 47, 400-410, DOI: 10.1007/978-3-030-27011-7_51
  36. Selejdak, J., Khmil, R., Blikharskyy, Z., 2018. The influence of simultaneous action of the aggressive environment and loading on strength of RC beams, Matec Web of Conferences, 183, 02002, DOI: https://doi.org/10.1051/matecconf/201818302002
  37. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z., 2021. Crack resistance rc columns strengthened by cfrp system. Key Engineering Materials, 2021, 878, 127–133, DOI: 10.4028/www.scientific.net/KEM.878.127
  38. Semko, O., Filonenko, O., Yurin, O., Avramenko, Y., Mahas, N., 2023. Characteristic damages of reinforced concrete structures of the covering exposed to moisture. AIP Conference Proceedings, 2684, 030039, DOI: 10.1063/5.0120020
  39. Torabian, A., Mostofinejad, D., 2017. Externally Bonded Reinforcement on Grooves Technique in Circular Reinforced Columns Strengthened with Longitudinal Carbon Fiber-Reinforced Polymer under Eccentric Loading, ACI Structural Journal, 114(4), 861-873, DOI: 10.14359/51689567
  40. Tytarenko, R., Khmil, R., Selejdak, J., Vashkevych, R., 2023. Probabilistic Durability Assessment of RC Structures in Operation: An Analytical Review of Existing Methods, Lecture Notes in Civil Engineering, 290, 408-415, DOI: 10.1007/978-3-031-14141-6_41
  41. Ulewicz, R., Mazur, M., Bokůvka, O. 2013. Structure and mechanical properties of finegrained steels, Periodica Polytechnica Transportation Engineering, 41(2). 111–115
  42. Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel, Y.F., Kovalov, M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading. IOP Conference Series: Materials Science and Engineering, 1002(1), 012007, DOI: 10.1088/1757-899X/1002/1/012007
  43. Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading. Eastern-European Journal of Enterprise Technologies, 4(7-112), 6–17, DOI: 10.15587/1729-4061.2021.237954
  44. Yakovenko I., Dmytrenko Y., Bakulina V., 2022. Construction of Analytical Coupling Model in Reinforced Concrete Structures in the Presence of Discrete Cracks. Lecture Notes in Mechanical Engineering (LNME). Springer, Cham, 2022, 107–120. 10.1007/978-3-030-85057-9_10
  45. Zahuranec, M., Koteš, P., Kraľovanec, J., 2023. The Influence of the Prestressing Level of the Fully Threaded Anchor Bar on the Corrosion Rate, Buildings, 13(7), 1592, DOI: 10.3390/buildings13071592
Language: English
Page range: 36 - 45
Submitted on: Nov 10, 2023
Accepted on: Dec 6, 2023
Published on: Dec 29, 2023
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Yaroslav Blikharskyy, Roman Khmil, Jacek Selejdak, Dušan Katunský, Roman Tytarenko, Zinoviy Blikharskyy, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.