Have a personal or library account? Click to login
Recycling of Asbestos-Cement Waste – An Opportunity or a Threat? Cover

Recycling of Asbestos-Cement Waste – An Opportunity or a Threat?

By: Natalia Brycht  
Open Access
|Dec 2022

References

  1. Asbestos Base: https://bazaazbestowa.gov.pl/pl/ (accessed on 07 February 2022)
  2. Asbestos Data Sheet - Mineral Commodity Summaries 2020, U.S. Geological Survey, Mineral Commodity Summaries, January 2020: file:///D:/Desktop/mcs2020-asbestos.pdf (accessed on 13 February 2022)
  3. Dong, W., Li, W., Tao, Z., 2021. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet, Resources, Conservation & Recycling, 172, 105664, DOI: 10.1016/j.resconrec.2021.10566410.1016/j.resconrec.2021.105664
  4. Frank, A. L., 2020. Global use of asbestos - legitimate and illegitimate issues, Journal of Occupational Medicine and Toxicology, 15:16, DOI: 10.1186/s12995-020-00267-y10.1186/s12995-020-00267-y729476232549902
  5. Gualtieri, A. F., 2013. Recycling asbestos- containing material (ACM) from construction and demolition waste (CDW): Handbook of Recycled Concrete and Demolition Waste, 500-525, DOI: 10.1533/9780857096906.4.50010.1533/9780857096906.4.500
  6. Gualtieri, A. F., Boccaletti, M., 2011. Recycling of the product of thermal inertization of cement–asbestos for the production of concrete, Construction and Building Materials, 25, 3561-3569, DOI: 10.1016/j.conbuildmat.2011.03.04910.1016/j.conbuildmat.2011.03.049
  7. Gualtieri, A. F., Tartaglia, A., 2000. Thermal decomposition of asbestos and recycling in traditional ceramics, Journal of the European Ceramic Society, 20, 1409-1418.10.1016/S0955-2219(99)00290-3
  8. Gualtieri, A. F., Veratti, L., Tucci, A., Esposito, L., 2012. Recycling of the product of thermal inertization of cement-asbestos in geopolymers, Construction and Building Materials, 31, 47-51, DOI: 10.1016/j.conbuildmat.2011.12.08710.1016/j.conbuildmat.2011.12.087
  9. Helbrych, P., 2019. Recycling of sulfur polymers derived from the purification process of copper and other non-ferrous metals in concrete composites, Construction of Optimized Energy Potential, 8(1), 131-136, DOI: 10.17512/bozpe.2019.1.1410.17512/bozpe.2019.1.14
  10. Hui, T., Sun, H. J., Peng, T. J., 2021. Preparation and characterization of cordierite-based ceramic foams with permeable property from asbestos tailings and coal fly ash, Journal of Alloys and Compounds, 885, DOI: 10.1016/j.jallcom.2021.16096710.1016/j.jallcom.2021.160967
  11. International Ban Asbestos Secretariat: http://ibasecretariat.org/graphics_page.php (accessed on 13 February 2022)
  12. Iwaszko, J., Lubas, M., Sitarz, M., Zajemska, M., Nowak, A., 2021. Production of vitrified material from hazardous asbestos-cement waste and CRT glass cullet, Journal of Cleaner Production, 317, DOI: 10.1016/j.jclepro.2021.12834510.1016/j.jclepro.2021.128345
  13. Iwaszko, J., Przerada, I., Zawada, A., 2017. Microstructural aspects of high-energy milling of asbestos-cement materials, Ceramic Materials, 69, 2, 84-89.
  14. Jura, J., 2020. Influence of type of biomass burned on the properties of cement mortar containing fly ash, Construction of optimized energy potential, 9, 1, 77-82, DOI: 10.17512/bozpe.2020.1.0910.17512/bozpe.2020.1.09
  15. Jura, J., Ulewicz, M., 2021. Assessment of the Possibility of Using Fly Ash from Biomass Combustion for Concrete, Materials, 14, 6708: https://doi.org/10.3390/ma1421670810.3390/ma14216708858703534772233
  16. Kumar Goyal, R., Agarwal, V., Gupta, R., Rathore, K., Somani, P., 2021. Optimum utilization of ceramic tile waste for enhancing concrete properties, Materials Today: Proceedings, 49, 1769-1775, DOI: 10.1016/j.matpr.2021.08.01110.1016/j.matpr.2021.08.011
  17. Kusiorowski, R., Zaremba, T., Piotrowski, J., Jung, T., 2014. Zastosowanie odpadów azbestowych w masach ceramicznych do produkcji ceramiki budowlanej, Materiały Ceramiczne, 66, 3, 245-252.
  18. Kusiorowski, R., Zaremba, T., Piotrowski, J., 2015. Wykorzystanie odpadów zawierających azbest do wytwarzania ceramicznych materiałów budowlanych o czerepie spieczonym, Materiały Ceramiczne, 67, 3, 279-285.
  19. Kusiorowski, R., Zaremba, T., Piotrowski, J., 2014. The potential use of cement– asbestos waste in the ceramic masses destined for sintered wall clay brick manufacture, Ceramics International, 40, 11995-12002, DOI: 10.1016/j.ceramint.2014.04.03710.1016/j.ceramint.2014.04.037
  20. Leonelli, C., Veronesi, P., Boccaccini, D. N., Rivasi, M. R., Barbieri, L., Andreola, F., Lancellotti, I., Rabitti, D., Pellacani G. C., 2006. Microwave Thermal Inertisation of Asbestos Containing Waste and its Recycling in Traditional Ceramics, Journal of Hazardous Materials, 135(1-3), 149-155, DOI: 10.1016/j.jhazmat.2005.11.03510.1016/j.jhazmat.2005.11.03516406335
  21. Łuniewski, S., Łuniewski A., 2019. Selected legal and financial conditions for the liquidation of asbestos and products containing asbestos illustrated with an example of rural municipalities in the podlaskie voivodeship, Ekonomia i Środowisko, 3(70), 154-166, DOI: 10.34659/2019/3/41
  22. Martin, J., Beauparlant, M., Sauvé, S., L’Espérance, G., 2017. Effect of accelerating voltage on beam damage of asbestos fibers in the transmission electron microscope (TEM), Micron 96, 1-8, DOI: 10.1016/j.micron.2017.01.00610.1016/j.micron.2017.01.00628199862
  23. Obmiński, A., 2021. Asbestos waste recycling using the microwave technique – Benefits and risks, Environmental Nanotechnology, Monitoring & Management, 16, 100577, DOI: 10.1016/j.enmm.2021.10057710.1016/j.enmm.2021.100577
  24. Pawełczyk, A., Božek, F., Grabas. K., Chęcmanowski, J., 2017. Chemical elimination of the harmful properties of asbestos from military facilities, Waste Management, 61, 377-385, DOI: 10.1016/j.wasman.2016.11.04110.1016/j.wasman.2016.11.04127979425
  25. Pietrzak, A., 2018. Ocena wpływu recyklatów z butelek PET na wybrane właściwości betonu, Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 7, 1, 51-56, DOI: 10.17512/bozpe.2018.1.0710.17512/bozpe.2018.1.07
  26. Pietrzak, A., 2019. Wpływ popiołów powstałych ze spalania osadów ściekowych na podstawowe właściwości mechaniczne betonu, Construction of optimized energy potential, 8, 1, 29-35, DOI: 10.17512/bozpe.2019.1.0310.17512/bozpe.2019.1.03
  27. Pietrzak, A., Ulewicz, M., 2017. Wpływ odpadów ze stłuczki szklanej kineskopowej (CRT) na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 49-50, DOI: 10.15199/33.2017.10.1610.15199/33.2017.10.16
  28. Pietrzak, A., Ulewicz, M., 2018. Wpływ poużytkowych odpadów wykładzin samochodowych na parametry wytrzymałościowe zapraw cementowych, Materiały Budowlane, 10, 85-86, DOI: 10.15199/33.2018.10.2610.15199/33.2018.10.26
  29. Popławski, J., 2020. Influence of biomass fly-ash blended with bituminous coal flyash on properties of concrete, Construction of Optimized Energy Potential (CoOEP), Vol. 9, No 1, 89-96, DOI: 10.17512/bozpe.2020.1.1110.17512/bozpe.2020.1.11
  30. Ranaivomanana, H., Leklou, N., 2021. Investigation of microstructural and mechanical properties of partially hydrated Asbestos-Free fiber cement waste (AFFC) based concretes: Experimental study and predictive modeling, Construction and Building Materials, 277, DOI: 10.1016/j.conbuildmat.2020.12194310.1016/j.conbuildmat.2020.121943
  31. Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete, Physicochemical Problems of Mineral Processing, 52(2), 1002−1010, DOI: 10.5277/ppmp160237
  32. Ulewicz, M., Liszewski, W., 2020. Influence of public financial support on the process of roof covering replacement and safety of civil structures, System Safety: Human - Technical Facility -Environment, 2, 1, 259-267, DOI: 10.2478/czoto-2020-003210.2478/czoto-2020-0032
  33. Ulewicz, M., Pietrzak, A., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats, Materials, 14, 872: https://doi.org/10.3390/ma1404087210.3390/ma14040872791859633670384
  34. Viani, A., Gualtieri A. F., 2014. Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes, Cement and Concrete Research, 58, 56-66, DOI: 10.1016/j.cemconres.2013.11.01610.1016/j.cemconres.2013.11.016
  35. Wójcik, M., 2018. Azbest w odpadach motoryzacyjnych. Współczesne metody recyklingu odpadów azbestowych z sektora motoryzacyjnego, Autobusy, 4, 27-32, DOI: 10.24136/atest.2018.01610.24136/atest.2018.016
  36. Yoshikawa, N., Kashimura, K., Hashiguchi, M., Sato, M., Horikoshi, S., Mitani, T., Shinohara N., 2015. Detoxification mechanism of asbestos materials by microwave treatment, Journal of Hazardous Materials, 284, 201-206, DOI: 10.1016/j.jhazmat.2014.09.03010.1016/j.jhazmat.2014.09.03025463234
Language: English
Page range: 10 - 18
Submitted on: Nov 25, 2021
Accepted on: Mar 30, 2022
Published on: Dec 31, 2022
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Natalia Brycht, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.