Have a personal or library account? Click to login
Improving the Quality of the Friction Welding Process of Steel Components Cover

Improving the Quality of the Friction Welding Process of Steel Components

Open Access
|Jun 2021

References

  1. Budzik, G., Jaskólski, J., 2004. Obciążenia cieplne tłoków silników spalinowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 3075-3082.
  2. Chang, AS., 2004. Control points and measures of a quality process, International Journal of Materials & Product Technology, 20(1-3), 205-209.
  3. Czerwińska, K., Dwornicka, R., Pacana, A., 2019. Analysis of non-compliance for the cast of the industrial robot basis, METAL 2019: 28th International Conference on Metallurgy and Materials, Brno, Tanger LTD.
  4. Czerwińska, K., Pacana, A., 2016. Application eddy currents inthe control quality piston diesel, Interdisciplinarity in Theory and Practice, 11, 30-32.
  5. Ferenc, K., Cegielski, P., Chmielewski, T., 2015. Technika spawalnicza w praktyce, Poradnik inżyniera konstruktora i technologa, Verlag Dashofer, Warszawa.
  6. Kimpong, K., Watanabe, T., 2004. Friction Stir Welding of Aluminum Alloy to Steel, Welding Journal, October, 277-282.
  7. Kudła, K., Wojsy, K., Kucharczyk, Z., 2013. Własności zakładkowych złączy spajanych metodą zgrzewania tarciowego z przemieszaniem (FSW – Friction Stir Welding), Obróbka Plastyczna Metali, 24(3), 179-191.
  8. Langabeer, JR., 2018. Performance management methods and tools, Performance Improvement in Hospitals and Health Systems: Managing Analytics and Quality in Healthcare, 2nd Edition, 43-61.
  9. Liu, MZ., Zhao, ZB., Jiang, ZQ., Ge, MG., Ling, L., Luo, Y., Wang, XQ., 2011. Research of correlation-model between qualities attributes and quality control points in assembly process of the complex product based on network flow, Advanced Materials Research, 403-408, 3015.
  10. Melton, T., 2005. The benefits of lean manufacturing - What lean thinking has to offer the process industries, Chemical Engineering Research & Design, 83(6), 662-673.
  11. Pacana, A., Czerwińska, K., Bednarowa, L., 2018. Comprehensive improvement of the surface quality of the diesel engine piston, Metalirgija, 58, 3-4, 329-332.
  12. Pacana, A., Czerwińska, K., 2020. Improving the quality level in the automotive industry, Production Engineering Archives, 26(4), 162–166. <a href="https://doi.org/10.30657/pea.2020.26.29" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.30657/pea.2020.26.29</a>
  13. Pawlowski, K., Pawlowski, E., 2018. Complementarity of modern management methods and tools, and its impact on economic and organizational performance of enterprises, Empirical Results from Polish Enterprises, Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, 606, 213-221.
  14. Pietrzak, K., Kaliński, D., Chmielewski, M., Chmielewski, T., Włosiński, W., Choręgiewicz, K. 2011. Processing of intermetallics with Al2O3 or steel joints obtained by friction welding technique, 12th Conference of the European Ceramic Society – ECerS XII, Stockholm.
  15. Salacinski, T., Chmielewski, T., Winiarski, M., Cacko, R., Świercz, R., 2018. Roughness of Metal Surface After Finishing Using Ceramic Brush Tools, Advances in Materials Science, 18(1), 20-27.
  16. Seyanin, IF., Deev, VB., Kukharenko, AV., 2015. Resource-saving and environment-saving production technologies of secondary aluminum alloys, Russian Journal of Non-Ferrous Metals, 56(3), 272-276.
  17. Silva, MLN., Pires, GH., Button, ST., 2011. Damage evolution during cross wedge rolling of steel DIN 38MnSiVS5, 11TH International Conference on the Mechanical Behavior of Materials (Icm11), Procedia Engineering, 10.
  18. Singh, P., Batra, U., Sangal, S., 2017. Fracture Toughness Behavior of 38MnSiVS5 Microalloyed Steel After Isothermal Transformation and Thermomechanical Processing, Materials Today-Proceedings, 4(8), 8528-8537.
  19. Wang, HD., Wang, KS., Wang, W., Lu, YX., Peng, P., Han, P., Qiao, K., Liu, ZH., Wang, L., 2020. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding, Acta Metallurgica Sinica-English Letters.
  20. Wei, YN., Li, H., Xiao, P., Zou, JT., 2020. Microstructure and Conductivity of the Al-Cu Joint Processed by Friction Stir Welding, Advances in Materials Science and Engineering, 2020, 6845468, 1-10.
  21. Xu, XX., You, GQ., Ding, Yh., Tong, X., Zai, L., Liu, Q., 2020. Microstructure and mechanical properties of inertia friction welded joints between high-strength low-alloy steel and medium carbon steel, Journal of Materials Processing Technology, 286, 116811.
  22. Sato, Y.S., Urata, M., Kokawa, H., 2002. Parameters controlling microstructure and hardness during- friction-stir welding of precipitation-hardenable, Metallurgical and Materials Transactions A, 33A, March, 625-635.
  23. Staniszewska, E., Klimecka-Tatar, D., Obrecht, M., 2020. Eco-design processes in the automotive industry. Production Engineering Archives, 26(4), 131–137. <a href="https://doi.org/10.30657/pea.2020.26.25" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.30657/pea.2020.26.25</a>
  24. Zhang, CH., Huang, GJ., Cao, Y., Zhu, Yl., Huang, XD., Zhou, Y., Li, Ql., Zeng, QH., Liu, Q., 2020. Microstructure evolution of thermo-mechanically affected zone in dissimilar AA2024/7075 joint produced by friction stir welding, VACUUM, 179, 109515.
  25. Zima, S., 2005. Motorkolben: Bauarten, Betrieb, Schäden. Vieweg Verlag, 278.
Language: English
Page range: 47 - 54
Submitted on: Nov 12, 2020
Accepted on: Mar 31, 2021
Published on: Jun 20, 2021
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2021 Andrzej Pacana, Karolina Czerwińska, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.