Have a personal or library account? Click to login
Safety of Construction Components in a Very High Number of Load Cycles Cover

Safety of Construction Components in a Very High Number of Load Cycles

Open Access
|Apr 2020

References

  1. Bathias, C., 1999. There is no infinite fatigue life in metallic materials, Fatigue Fract. Eng. Mater. Struct. 22/7, 559-565.
  2. Bathias, C., 2006. Piezoelectric fatigue testing machines and devices, Int. J. Fatigue. 28, 1438-1445
  3. Bathias, C., Paris, P., C., 2005. Gigacycle Fatigue in Mechanical Practice, M. Delaker, New York.
  4. Belan, J., Kuchariková, L., Tillová, E., Chalupová, M., 2019. Three-Point Bending Fatigue Test of TiAl6V4 Titanium Alloy at Room Temperature, Advances in Materials Science and Engineering, 2019, Art. No.: 2842416. DOI: 10.1155/2019/2842416
  5. Bokůvka, O., Jambor, M., Hrček, S., Šteininger, J., Nový, F., Trško, L., 2019. Design of shaft respecting the fatigue limit for ultra-high number of cycles, Period. Polyt. – Transport Eng., 47/1, 6-12.
  6. Bokůvka, O., Nicoletto, G., Kunz, L., Palček, P., Chalupová, M., 2002. Low and High Frequency Fatigue Testing, EDIS ŽU Žilina.
  7. Bokůvka, O., Nicoletto, G., Guagliano, M., Kunz, L., Palček, P., Nový, F., Chalupová, M., 2014. Fatigue of Materials at Low and High Frequency Loading, EDIS ŽU Žilina.
  8. Faturík, L., Hrček, S., Trško, L., Bokůvka, O., 2014. Comparison of Structural Design in High and Ultra-High Cycle Fatigue Region, Trans. of FAMENA, 38/4, 1-12.
  9. Hőppel, H., W., Prell, M., May, L. Gőken, M., 2010. Influence of grain size and precipitates on the fatigue lives and deformation mechanisms in the VHCF regime, Procedia Eng., 1025-2034.
  10. Chapetti, M. D., 2010. Prediction of threshold for very high cycle fatigue (N > 107 cycles), Procedia Eng. 2, 257-264.
  11. Kazymyrovich, V., 2009. Very High Cycle Fatigue of Engineering Materials (a literature review), Fac. of Technol. And Sicence, Materials Engineering, Karlstads Universitet.
  12. Lukáš, P., Kunz, L., Navrátilová, L., Bokůvka, O., 2011. Fatigue damage of ultra-fine – grain cooper in very-high cycles fatigue region, Mat. Sci. & Eng. – A., 528, 7036-7040.
  13. Nový, F., Činčala, M., Kopas, P., Bokůvka, O., 2007. Mechanisms of high-strength structural material fatigue failure in ultra-wide life region, Mat. Sci. & Eng. – A., 462/1-2, 189-192.
  14. Nový, F., Ulewicz, R., Bokůvka, O., Trško, L., Lago, J., 2016. Reliability and safety of structural elements in the gigacycle region of loading, Communications – Scientific Lett. of the University of Žilina, 20/3, 15-18.
  15. Ritchie, R. O., 1981. Application of Fracture Mechanics to Fatigue Crack Propagation, University of California, USA.
  16. Skočovský, P., Palček, P., Konečná, R., Várkoly, L., 2000. Structural Materials, EDIS ŽU Žilina (in Slovak).
  17. Stanzl-Tschegg, S. E., 1999. Fracture mechanisms at ultrasonic frequencies, Fatigue Fract. Eng. Mater. Struct., 22/7, 567-579.
  18. Stanzl-Tschegg, S. E., Mayer, H., 2001. Fatigue in the Very High Cycle Regime, Proc. Int. Conf. Vienna, Austria.
  19. Trško, L., Nový, F., Bokůvka, O., Jambor, M., 2018. Ultrasonic fatigue testing in the tension-compression mode, J. Vis. Exp. (133), e 57007.
  20. Ulewicz, R., Mazur, M., 2013. Fatigue testing of structural steels as a factor of safety of technical facilities maintenance, Prod. Eng. Arch., 1(1), 32-34.
  21. Vaško, A., Belan, J., Kuchariková, L., Tillová, E., 2017. Low and high frequency fatigue tests of nodular cast irons, Metalurgija, 56, 1-2, 25-28.
Language: English
Page range: 199 - 206
Submitted on: Nov 13, 2019
Accepted on: Feb 3, 2020
Published on: Apr 18, 2020
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2020 František Nový, Juraj Belan, Otakar Bokůvka, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.