Have a personal or library account? Click to login
Effects of Varying Tobacco Rod Circumference on Cigarette Combustion: An Experimental Investigation Cover

Effects of Varying Tobacco Rod Circumference on Cigarette Combustion: An Experimental Investigation

Open Access
|Aug 2019

References

  1. 1. McAdam, K., A. Eldridge, M. Fearon, C. Liu, A. Manson, J. Murphy, and A. Porter: Influence of Cigarette Circumference on Smoke Chemistry, Biological Activity, and Smoking Behaviour; Regul. Toxicol. Pharmacol. 82 (2016) 111–126. DOI: 10.1016/j.yrtph.2016.09.01010.1016/j.yrtph.2016.09.010
  2. 2. Lugton, W.G.D.: Cigarette Parameters: The Effect of Altering the Circumference; BAT Report No RD.834-R. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/hnby0193 (accessed February 2019).
  3. 3. Perfetti, P.F., D.E. Townsend, and J.N. Taylor: The Effect of Circumference on Cigarette Burn Rates and Deliveries; RJRT Report R&DM No 75. Project No 7608, 1983. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/qjhg0082 (accessed February 2019).
  4. 4. Schneider, W. and A. Schlüter: A Semi-Empirical Model for Simulating the Effect of Design Components on Smoke Deliveries; BAT Forschung Entwicklung und Produktion, 1987. Available at: https://industrydocuments.library.ucsf.edu/tobacco/docs/#id=msfl0138 (accessed February 2019).
  5. 5. Norman, A.: Cigarette Design and Materials; Chapter 11B in: Tobacco: Production, Chemistry and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science, Oxford, UK, 1999, 353–387.
  6. 6. Irwin, W.D.E.: The Effect of Circumference on Mainstream Deliveries and Composition: Progress Report 2; BAT Report No RD. 2135, BAT UK, February 22, 1989. Available at: https://www.industrydocuments.library.ucsf.edu/tobacco/docs/#id=lnvv0205 (accessed February 2019).
  7. 7. Liu, C., Y. DeGrandpré, A. Porter, A. Griffiths, K.G. McAdam, R. Voisine, F. Côté, and C.J. Proctor: The Use of a Novel Tobacco Treatment Process to Reduce Toxicant Yields in Cigarette Smoke; Food Chem. Toxicol. 49 (2011) 1904–1917. DOI: 10.1016/j.fct.2011.02.01510.1016/j.fct.2011.02.015
  8. 8. McAdam, K.G., E.O. Gregg, C. Liu, D.J. Dittrich, M.G. Duke, and C.J. Proctor: The Use of a Novel Tobacco-Substitute Sheet and Smoke Dilution to Reduce Toxi-cant Yields in Cigarette Smoke; Food Chem. Toxicol. 49 (2011) 1684–1696. DOI: 10.1016/j.fct.2011.04.00210.1016/j.fct.2011.04.002
  9. 9. McAdam, K.G., E.O. Gregg, M. Bevan, D.J. Dittrich, S. Hemsley, C. Liu, and C.J. Proctor: Design and Chemical Evaluation of Reduced Machine-Yield Cigarettes; Regul. Toxicol. Pharmacol. 62 (2012) 138–150. DOI: 10.1016/j.yrtph.2011.11.00710.1016/j.yrtph.2011.11.007
  10. 10. Dittrich, D.J., R.T. Fiebelkorn, M.J. Bevan, D. Rush-forth, J.J. Murphy, M. Ashley, K.G. McAdam, C. Liu, and C.J. Proctor: Approaches for the Design of Reduced Toxicant Emission Cigarettes; SpringerPlus 3 (2014) 374. DOI: 10.1186/2193-1801-3-37410.1186/2193-1801-3-374
  11. 11. Baker, R.R.: Product Formation Mechanisms Inside a Burning Cigarette; Prog. Energy Combust. Sci. 7 (1981) 135–153. DOI: 10.1016/0360-1285(81)90008-310.1016/0360-1285(81)90008-3
  12. 12. DeBardeleben, M.A., W.E. Claflin, and W.F. Gannon: Role of Cigarette Physical Characteristics on Smoke Composition; Rec. Adv. Tob. Sci. 4 (1978) 85–111.
  13. 13. Yamamoto, T., U. Anzai, and T. Okada: Effect of Cigarette Circumference on Weight Loss During Puffs and Total Delivery of Tar and Nicotine; Beitr. Tabakforsch. Int. 12 (1984) 259–269. DOI: 10.2478/cttr-2013-054710.2478/cttr-2013-0547
  14. 14. Yamamoto, T., Y. Suga, C. Tokura, T. Toda, and T. Okada: Effect of Cigarette Circumference on Formation Rates of Various Components in Mainstream Smoke; Beitr. Tabakforsch. Int. 13 (1985) 81–87. DOI: 10.2478/cttr-2013-055910.2478/cttr-2013-0559
  15. 15. Siu, M., N. Mladjenovic, and E. Soo: The Analysis of Mainstream Smoke Emissions of Canadian ‘Super Slim’ Cigarettes; Tob. Control. 22 (2013) e10. DOI: 10.1136/tobaccocontrol-2012-05045010.1136/tobaccocontrol-2012-05045022821751
  16. 16. Laszlo, T.S. and F.M. Watson III: A Scanning Infrared Technique for Cigarette Coal Peak Temperature Measurements; Beitr. Tabakforsch. 7 (1974) 269–275. DOI: 10.2478/cttr-2013-034110.2478/cttr-2013-0341
  17. 17. Baker, R.R.: Temperature Distribution Inside a Burning Cigarette; Nature 247 (1974) 405–406. DOI: 10.1038/247405a010.1038/247405a0
  18. 18. Baker, R.R.: Temperature Variation Within a Cigarette Combustion Coal During the Smoking Cycle; High Temp. Sci. 7 (1975) 236–247.
  19. 19. Muramatsu, M.: Studies on the Transport Phenomena in Naturally Smoldering Cigarettes; Kenkyu Hokoku, Scientific Papers of the Central Research Institute, Japan Tobacco & Salt Public Corporation, 1981.
  20. 20. Li, B., H.R. Pang, L.C. Zhao, B. Wang, C. Liu, K.G. McAdam, and D.S. Luo: Quantifying Gas-Phase Temperature Inside a Burning Cigarette; Ind. Eng. Chem. Res. 53 (2014) 7810–7820. DOI: 10.1021/ie500982210.1021/ie5009822
  21. 21. Li, B., L.C. Zhao, C.F. Yu, C. Liu, Y. Jing, H.R. Pang, B. Wang, and K.G. McAdam: Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette; Beitr. Tabakforsch. Int. 26 (2014) 191–203. DOI: 10.1515/cttr-2015-000710.1515/cttr-2015-0007
  22. 22. Li, B., L.C. Zhao, L. Wang, C. Liu, K.G. McAdam, and B. Wang: Gas-Phase Pressure and Flow Velocity Fields Inside a Burning Cigarette During a Puff; Thermochim. Acta 623 (2016) 22–28. DOI: 10.1016/j.tca.2015.11.00610.1016/j.tca.2015.11.006
  23. 23. Cui, X.M., C.F. Yu, H.J. Li, L. Wang, L.C. Zhao, and B. Li: Characterization of Instantaneous Burning Rate and Analysis of Regional Characters in Burning Cone Based on Cigarette Temperature Measurement Technology; Tob. Sci. Technol. 50 (2017) 73–79. DOI: 10.16135/j.issn1002-0861.2016.0362
  24. 24. Cui, X.M.: The Influence of Tobacco Structure on the Combustion State of Cigarette; Thesis, Available at: http://g.wanfangdata.com.cn/details/detail.do?_type=degree&id=D01199943# (accessed February 2019).
  25. 25. Resnik, F.E., W.G. Houck, W.A. Geiszler, and J.E. Wickham: Factors Affecting Static Burning Rate; Tob. Sci. XXI (1977) 103–107. Available at: https://www.coresta.org/sites/default/files/abstracts/Tobacco_Science_1977_XXI_p._103-7_ISSN.0082-4623.pdf (accessed August 2019)
  26. 26. Baker, R.R.: A Review of Methods of Altering the Burning Characteristics of Cigarettes; BAT Report No. RD 1012-R, June 4, 1973. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/npdp0205 (accessed August 2019)
  27. 27. Irwin, W.D.E.: The Effect of Circumference on Mainstream Deliveries and Composition; Progress Report. BAT Report No RD. 2112, March, 30, 1988. Available at: http://industrydocuments.library.ucsf.edu/tobacco/docs/qhng0207 (accessed February 2019).
  28. 28. Rodgman, A. and T.A. Perfetti: The Chemical Components of Tobacco and Tobacco Smoke; CRC Press, Boca Raton, FL, USA, 2013.
  29. 29. Zhou, S.Y.: Effects of Redrying and Drying Process on Pyrolysis and Combustion Characteristics of Tobacco Biomass; Thesis, Shanghai, East China University of Science and Technology, 2015. Available at: http://g.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2970618 (accessed August 2019)
  30. 30. International Organisation for Standardization (ISO): ISO 4387:2000 – Cigarettes – Determination of Total and Nicotine-Free Dry Particulate Matter Using a Rroutine Analytical Smoking Machine; ISO, Geneva, Switzerland, 2000.
  31. 31. International Organisation for Standardization (ISO): ISO 10315:2000 – Cigarettes – Determination of Nicotine in Smoke Condensates – Gas-Chromatographic Method; ISO Geneva, Switzerland, 2000.
  32. 32. International Organisation for Standardization (ISO): ISO 10362-2:2013 – Cigarettes – Determination of Water in Smoke Condensates – Part 2: Karl Fischer Method; ISO Geneva, Switzerland, 2013.
  33. 33. International Organisation for Standardization (ISO): ISO ISO 8454:1995 – Cigarettes – Determination of Carbon Monoxide in the Vapour Phase of Cigarette Smoke – NDIR method; ISO Geneva, Switzerland, 1995.
  34. 34. International Organisation for Standardization (ISO): ISO 3308:2012 – Routine Analytical Cigarette-Smoking Machine – Definitions and Standard Conditions, ISO, Geneva, Switzerland, 2012.
Language: English
Page range: 286 - 296
Submitted on: Mar 13, 2019
Accepted on: Aug 20, 2019
Published on: Aug 30, 2019
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Nan Deng, Yalin Wang, Xiaomeng Cui, Wenkang Zhao, Qiaoling Li, Chuan Liu, Le Wang, Xingyi Jiang, Hexiang Chen, Bin Li, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.