Have a personal or library account? Click to login
Investigation of Tobacco Pyrolysis Gases and Puff-by-puff Resolved Cigarette Smoke by Single Photon Ionisation (SPI) - Time-of-flight Mass Spectrometry (TOFMS) Cover

Investigation of Tobacco Pyrolysis Gases and Puff-by-puff Resolved Cigarette Smoke by Single Photon Ionisation (SPI) - Time-of-flight Mass Spectrometry (TOFMS)

By: T Adam,  S Mitschke and  RR Baker  
Open Access
|Dec 2014

References

  1. 1. Adam, T.: Investigation of Tobacco Pyrolysis Gases and Puff-by-puff resolved Cigarette Smoke by Single Photon Ionisation (SPI) - Time-of-flight Mass Spectrometry (TOFMS); PhD thesis; Technical Uni-versity of Munich (2006)
  2. 2. Adam, T., T. Streibel, S. Mitschke, F. Mühlberger, R. R. Baker, and R. Zimmermann: Application of time-of-flight mass spectrometry with laser-based photoioni-zation methods for analytical pyrolysis of PVC and tobacco; J. Anal. Appl. Pyrol. 74 (2005) 454–464.
  3. 3. Adam, T., S. Mitschke, T. Streibel, R. R. Baker, and R. Zimmermann: Puff-by-puff resolved characterisation of cigarette mainstream smoke by single photon ionisation (SPI) – time-of-flight mass spectrometry (TOFMS): Comparison of the 2R4F research cigarette and pure Burley, Virginia, Oriental and Maryland tobacco ciga-rettes; Anal. Chim. Acta 572 (2006) 219– 229.
  4. 4. Adam, T., S. Mitschke, T. Streibel, R.R. Baker and R. Zimmermann Quantitative puff-by-puff resolved characterization of selected toxic compounds in cigarette mainstream smoke; Chem. Res. Toxicol. 19 (2006) 511–520
  5. 5. Adam, T., T. Ferge, S. Mitschke, T. Streibel, R.R. Baker and R. Zimmermann Discrimination of three tobacco types (Burley, Virginia and Oriental) by pyrolysis single photon ionisation (SPI) / time-of-flight mass spectro-metry and advanced statistical methods; Anal. Bioanal. Chem. 381 (2005) 487–499.
  6. 6. Adam, T., R.R. Baker and R. Zimmermann: Characteri-zation of puff-by-puff resolved cigarette mainstream smoke by single photon ionization – time-of-flight mass spectrometry and principal component Analysis; J. Agric. Food Chem. 55 (2007) 2055–2061
  7. 7. Adam, T., R.R. Bakerm, and R. Zimmermann: Investi-gation, by single photon ionisation (SPI) – time-of-flight mass spectrometry (TOFMS), of the effect of different cigarette-lighting devices on the chemical composition of the first cigarette puff; Anal. Bioanal. Chem. 387 (2007) 575–584.
  8. 8. Mitschke, S., T. Adam, T. Streibel, R.R. Baker, and R. Zimmermann: Application of time-of-flight mass spec-trometry with laser-based photo-ionization methods for time-resolved on-line analysis of mainstream cigarette smoke; Anal. Chem. 77 (2005) 2288–2296.
  9. 9. Baker, R.R.: Smoke Chemistry; in: Tobacco: Pro-duction, Chemistry, and Technology, edited by L.D. Davis and M.T. Nielsen, Blackwell Science, Oxford, U.K., 1999, pp. 398–439.
  10. 10. Dallüge, J., L.L.P. Van Stee, X. Xu, J. Williams, J. Beens, R.J.J. Vreuls, and U.A.T. Brinkman: Unravelling the composition of very complex samples by com-prehensive gas chromatography coupled to time-of-flight mass spectrometry: Cigarette smoke; J. Chro-matogr. A 974 (2002) 169–184.
  11. 11. Wakeham, H.: Recent trends in tobacco and tobacco smoke research; 162nd National Meeting of the American Chemical Society, Washington D.C., 1971.10.1007/978-1-4757-0462-4_1
  12. 12. Gaworski, C.L., M.M. Dozier, S.R. Eldridge, R. Morrissey, N. Rajendran, and J.M. Gerhart: Cigarette smoke vapor-phase effects on the rat upper respiratory tract; Inhal. Toxicol. 10 (1998) 857–873.
  13. 13. Norman, V.: An overview of the vapor phase, sem-volatile and nonvolatile components of cigarette smoke; Rec. Adv. Tob. Sci. 3 (1977) 28–58.
  14. 14. Dube, M.F. and C.R. Green: Methods of collection of smoke for analytical purposes; Rec. Adv. Tob. Sci. 8 (1982) 42–102.
  15. 15. Streibel, T., K. Hafner, F. Mühlberger, T. Adam, R. Warnecke, and R. Zimmermann: Investigation of NOx precursor compounds and other combustion by-products in the primary combustion zone of a waste incineration plant using on-line, real time mass spectrometry and Fourier-Transform Infrared Spectrometry (FT-IR); Anal. Bioanal. Chem. 384 (2005) 1096–1106.
  16. 16. Cao, L., F. Mühlberger, T. Adam, T. Streibel, H.Z. Wang, A. Kettrup, and R. Zimmermann: Resonance-enhanced multiphoton ionization and VUV-single photon ionization as soft and selective laser ionization methods for on-line time-of-flight mass spectrometry: Investigation of the pyrolysis of typical organic conta-minants in the steel recycling process; Anal. Chem. 75 21 (2003) 5639–5645.
  17. 17. Mühlberger, F., J. Wieser, A. Ulrich, and R. Zimmer-mann: Coupling of a novel electron beam pumped rare gas-excimer VUV-light source for single photon ioni-zation (SPI) to a mobile time-of-flight mass spectro-meter: A new concept for a robust and compact on-line real-time industrial process gas analyzer; Anal. Chem. 74 (2002) 3790–3801.
  18. 18. Mühlberger, F., J. Wieser, A. Morozov, A. Ulrich, and R. Zimmermann: Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source; Anal. Chem. 77 (2005) 2218–2226.
  19. 19. Dorfner, R., T. Ferge, C. Yeretzian, A. Kettrup, and R. Zimmermann: Laser mass spectrometry as on-line sensor for industrial process analysis: Process control of coffee roasting; Anal. Chem. 76 (2004) 1386–1402.
  20. 20. Mühlberger, F.: Entwicklung von on-line-Analysever-fahren auf Basis der Einphotonenionisations-Massen-spektrometrie [Development of analytical on-line methods based on single photon ionization mass spectro-metry]; PhD thesis; Technical University of Munich, 2003.
  21. 21. Baker, R.R. and L. J. Bishop: The pyrolysis of tobacco ingredients; J. Anal. Appl. Pyrol. 71 (2004) 223–311.10.1016/S0165-2370(03)00090-1
  22. 22. Baker, R.R.: A review of pyrolysis studies to unravel reaction steps in burning tobacco; J. Anal. Appl. Pyrol. 11 (1987) 555–573.
  23. 23. Shin, E.-J., M.R. Hajaligol, and F. Rasouli: Characterizing biomatrix materials using pyrolysis mole-cular beam mass spectrometer and pattern recognition; J. Anal. Appl. Pyrol. 68 (2003) 213–229.
  24. 24. Simmleit, N. and H.-R. Schulten: Differentiation of commercial tobacco blends by pyrolysis field ionization mass spectrometry and pattern recognition; Fresenius J. Anal. Chem. 324 (1986) 9–12.
  25. 25. Schulten, H.-R.: Pyrolysis-field ionization mass spectro-metry – A new method for direct, rapid characterization of tobacco; Beitr. Tabakforsch. Int. 13 (1986) 219–227.
  26. 26. Halket, J.M.: Rapid characterization of tobacco by com-bined direct pyrolysis-field ionization mass spectrometry and pyrolysis-gas chromatography-mass spectrometry; J. Anal. Appl. Pyrol. 8 (1985) 547 - 560
  27. 27. Zimmermann, R., H.J. Heger, and A. Kettrup: On-line monitoring of traces of aromatic-, phenolic- and chlori-nated components in flue gases of industrial scale incinerators and cigarette smoke by direct-inlet laser ionization-mass spectrometry (REMPI-TOFMS); Frese-nius J. Anal. Chem. 363 (1999) 720–730.
  28. 28. Zimmermann, R., R. Dorfner, and A. Kettrup: Direct analysis of products form plant material pyrolysis; J. Anal. Appl. Pyrol. 49 (1999) 257–266.
  29. 29. Schmeltz, I., W.S. Schlotzhauer, and E.B. Higman: Characteristic products from pyrolysis of nitrogenous organic substances; Beitr. Tabakforsch. 6 (1972) 134– 138.
  30. 30. Stedman, R.L.: The chemical composition of tobacco and tobacco smoke; Chem. Rev. 68 (1968) 153–207
  31. 31. Schmeltz, I., A. Wenger, D. Hoffmann, and T.C. Tso: Chemical studies on tobacco smoke. 63. On the fate of nicotine during pyrolysis and in a burning cigarette; J. Agric. Food Chem. 27 (1979) 602–608.
  32. 32. Evans, R.J. and T.A. Milne: Molecular characterization of the pyrolysis of biomass. 1. Fundamentals; Energy & Fuels 1 (1987) 123–137.
  33. 33. Palmer, G.K. and R.C. Pearce: Light air-cured tobacco; in: Tobacco – Production, Chemistry, and Technology, edited by D.L. Davis and M.T. Nielsen, Blackwell Science, Oxford, U.K.; 1999, pp. 143–153.
  34. 34. Bokelman, G.H. and W.S. Ryan: Analyses of bright and burley tobacco laminae and stems; Beitr. Tabakforsch. Int. 13 (1985) 29–36.
  35. 35. Peedin, G.F.: Flue-cured tobacco; in: Tobacco – Production, Chemistry, and Technology, edited by D. L. Davis and M.T. Nielsen, Blackwell Science, Oxford, U.K., 1999, 104–142.
  36. 36. Gilchrist, S.N.: Oriental tobacco; in: Tobacco – Production, Chemistry, and Technology, edited by D. L. Davis and M.T. Nielsen, Blackwell Science, Oxford, U.K., 1999, pp. 154–164.
  37. 37. Schlotzhauer, W.S. and O.T. Chortyk: Recent Advances in studies on the pyrosynthesis of cigarette smoke constituents; Rec. Adv. Tob. Sci. 12 (1987) 193–222.
  38. 38. Fisher, R.: The use of multiple measurements in taxo-nomic problems; Ann. Eugenics 7 (1936) 179–188.
  39. 39. Duda, R.O. and P.E. Hart: Pattern classification and scene analysis; John Wiley & Sons Inc., New York, 1973, p. 482.
  40. 40. Krishnan, S., K. Samdravijava, and P.V.S. Rao: Feature selection for pattern classification with Gaussian mixture models: A new objective criterion; Patt. Rec. Lett. 17 (1996) 803–809.
  41. 41. Vilcins, G.: Determination of ethylene and isoprene in the gas phase of cigarette smoke by infrared spectro-scopy; Beitr. Tabakforsch. 8 (1975) 181–185.
  42. 42. Ceschini, P. and A. Lafaye: Evolution of the Gas-vapour phase and the total particulate matter of cigarette smoke in a single puff; Beitr. Tabakforsch. Int. 8 (1976) 378-–381.
  43. 43. Parrish, M.E., J.L. Lyons-Hart, and K.H. Shafer: Puff-by-puff and intrapuff analysis of cigarette smoke using infrared spectroscopy; Vib. Spectrosc. 27 (2001) 29–42.
  44. 44. Li, S., J.L. Banyasz, M.E. Parrish, J. Lyons-Hart, and K.H. Shafer: Formaldehyde in the gas phase of main-stream cigarette smoke; J. Anal. Appl. Pyrol. 65 (2002) 137–145.
  45. 45. Parrish, M.E., C.N. Harward, and G. Vilcins: Simulta-neous monitoring of filter ventilation and a gaseous com-ponent in whole cigarette smoke using tunable diode laser infrared spectroscopy; Beitr. Tabakforsch. Int. 13 (1986) 169–181.
  46. 46. Parrish, M.E. and C.N. Harward: Measurement of form-aldehyde in a single puff of cigarette smoke using tunable diode laser infrared spectroscopy; Appl. Spectrosc. 54 (2000) 1665–1677.
  47. 47. Shi, Q., D.D. Nelson, J.B. McManus, M.S. Zahniser, M.E. Parrish, R.E. Baren, K.H. Shafer, and C.N. Harward: Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis; Anal. Chem. 75 (2003) 5180–5190.
  48. 48. Baren, R.E., M.E. Parrish, K.H. Shafer, C.N. Harward, Q. Shi, D.D. Nelson, J.B. MacManus, and M.S. Zahniser: Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of main-stream and sidestream cigarette smoke; Spectrochim. Acta A 60 (2004) 3437–3447.
  49. 49. Plunkett, S., M.E. Parrish, K.H. Shafer, D. Nelson, J. Shorter, and M. Zahniser: Time-resolved analysis of cigarette combustion gases using a dual infrared tunable diode laser system; Vib. Spectrosc. 27 (2001) 53–63.
  50. 50. Thomas, C.E. and K.B. Koller: Puff-by-puff mainstream smoke analysis by multiplex gas chromatography-mass spectrometry; Beitr. Tabakforsch. Int. 19 (2001) 345–351.
  51. 51. Li, S., R.M. Olegario, J.L. Banyasz, and K.H. Shafer: Gas chromatography-mass spectrometry analysis of polycyclic aromatic hydrocarbons in single puff of ciga-rette smoke; J. Anal. Appl. Pyrol. 66 (2003) 156–163.
  52. 52. Wagner, K.A., R. Higby, and K. Stutt: Puff-by-puff analysis of selected mainstream smoke constituents in the Kentucky reference 2R4F cigarette; Beitr. Tabakforsch. Int. 21 (2005) 273–279.
  53. 53. Crooks, E.L. and D. Lynm: The measurement of intra-puff nicotine yield; Beitr. Tabakforsch. Int. 15 (1992) 75–86.
  54. 54. Baker, R.R. and C.J. Proctor: 2001 – A smoke odyssey; Coresta 2001; Xian, China, 2001.
  55. 55. Chen, P.X. and S.C. Moldoveanu: Mainstream smoke chemical analyses for 2R4F Kentucky reference cigarette; Beitr. Tabakforsch. Int. 20 (2003) 448–458.
  56. 56. Williams, T.B.: The determination of nitric oxide in gas phase cigarette smoke by non-dispersive infrared analysis; Beitr. Tabakforsch. Int. 10 (1980) 91–99.
  57. 57. Vilcins, G. and J.O. Lephardt: Ageing processes of cigarette smoke: formation of methyl nitrite; Chem. Ind. (London) 22 (1975) 974–975.
  58. 58. Cueto, R. and W.A. Pryor: Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy; Vib. Spectrosc. 7 (1994) 97–111.
  59. 59. Borland, C.D.R., A.T. Chamberlain, T.W. Higenbottam, R.W. Barber, and B.A. Thrush: A comparison between the rate of reaction of nitric oxide in the gas phase and in whole cigarette smoke; Beitr. Tabakforsch. Int. 13 (1985) 67–73.
  60. 60. Sloan, C.H. and J.E. Keifer: Determination of NO and NO2 in cigarette smoke from kinetic data; Tob. Sci. 13 (1969) 180–182.
  61. 61. Baker, R R. and R.A. Crellin: The diffusion of carbon monoxide out of cigarettes; Beitr. Tabakforsch. 9 (1977) 131–140.
  62. 62. Baker, R.R. and D.P. Robinson: Tobacco combustion – the last ten years; Rec. Adv. Tob. Sci. 16 (1990) 3–101.
  63. 63. Li, S., J.L. Banyasz, R.M. Olegario, C.B. Huang, E.A. Lambert, and K.H. Shafer: The flame effect on benzo[a]pyrene in cigarette smoke; Combust. Flame 128 (2002) 314–319.
  64. 64. Hoffmann, D. and I. Hoffmann: The changing cigarette: Chemical studies and bioassays; Monograph 13: Risks associated with smoking cigarettes with low tar machine-measured yields of tar and nicotine; Chapter 5; Rockville, Maryland, U.S., pp. 159–185.
  65. 65. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy: The less harmful cigarette: A controversial issue. A tribute to Ernst L. Wynder; Chem. Res. Toxicol. 14 (2001) 767–790.
  66. 66. Baker, R.R.: Temperature variation within a cigarette combustion coal during the smoking cycle; High. Temp. Sci. 7 (1975) 236–247.
  67. 67. Seeman, J.I., S.W. Laffoon, and A.J. Kassman: Evalu-ation of relationships between mainstream smoke acetaldehyde and “tar” and carbon monoxide yields in tobacco smoke and reducing sugars in tobacco blends of U.S. commerical cigarettes; Inhal. Toxicol. 15 (2003) 373–395.
  68. 68. Seeman, J.I., M. Dixon, and H.-J. Haussmann: Acet-aldehyde in mainstream tobacco smoke: formation and occurence in smoke and bioavailability in the smoker; Chem. Res. Toxicol. 15 (2002) 1331–1350.
  69. 69. Brunnemann, K.D., J. Masaryk, and D. Hoffmann: The role of tobacco stems in the formation of N-nitrosamines in tobacco and cigarette mainstream and sidestream smoke; J. Agr. Food Chem. 31 (1983) 1221–1224.
  70. 70. Norman, V., A.M. Ibrig, T.M. Larson, and B.L. Moss: The effect of some nitrogenous blend components on NO/NOX and HCN levels in mainstream and sidestream smoke; Beitr. Tabakforsch. Int. 12 (1983) 55–62.
  71. 71. Hoffmann, D. and I. Hoffmann: The changing cigarette: 1950–1995; J. Toxicol. Env. Health 50 (1997) 307–364.
  72. 72. Fowles, J. and M. Bates: The chemical constituents in cigarettes and cigarette smoke: Priorities for harm reduction; A report to the New Zealand Ministry of Health; Kenepuru Science Centre, Prirua, 2000, pp. 1–67.
  73. 73. Fowles, J. and E. Dybing: Application of toxicological risk assessment principles to the chemical constituents of cigarette smoke; Tob. Control 12 (2003) 424–430.
  74. 74. Vorhees, D.J., W. Heiger-Bernays, and M.D. McClean: Human health risk associated with cigarette smoke: The link between smoke constituents and additives; Menzie-Cura & Associates, Chelmsford, 1997.
  75. 75. Rodgman, A. and C.R. Green: Toxic chemicals in ciga-rette mainstream smoke – hazards and hoopla; Beitr. Tabakforsch. Int. 20 (2003) 481–545.
Language: English
Page range: 203 - 226
Submitted on: Sep 10, 2007
|
Accepted on: Dec 4, 2008
|
Published on: Dec 30, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 T Adam, S Mitschke, RR Baker, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.