Have a personal or library account? Click to login
A Diels-Alder Reaction Between A Cigarette Mainstream Smoke Component and Benzoquinone Cover

A Diels-Alder Reaction Between A Cigarette Mainstream Smoke Component and Benzoquinone

By: WM Coleman  
Open Access
|Dec 2014

References

  1. 1. Stedman, R. L.: The chemical composition of tobacco and tobacco smoke; Chem. Rev. 68 (1967) 153–207.
  2. 2. Baker, R.R.: Smoke chemistry; in: Tobacco Pro-duction, Chemistry and Technology; edited by Davis L.D. and M.T. Nielson, Blackwell Science, Oxford, UK, 1999, pp 398–439.
  3. 3. Wooten, J.B., S. Chouchane, and T.E. McGrath: Tobacco smoke constituents affecting oxidative stress, in: Cigarette Smoke and Oxidative Stress, edited by Halliwell B.B. and H.E. Poulsen, Springer, Berlin, 2006, pp 5–46.10.1007/3-540-32232-9_2
  4. 4. Halliwell, B.B. and H.E. Poulsen: Cigarette Smoke and Oxidative Stress, Springer, Berlin, 2006 pp 1–100.10.1007/3-540-32232-9
  5. 5. Pryor, W.A., D.G. Prier and D.F. Church: Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar; Environ. Health Perspect. 47 (1983) pp 345–355.10.1289/ehp.8347345
  6. 6. Pryor, W.A. and K. Stone: Oxidants in cigarette smoke; Anal. N.Y. Acad. Sci. 686 (1993) 12–27.10.1111/j.1749-6632.1993.tb39148.x
  7. 7. Maskos, Z., L. Khachatryan, R. Cueto, W.A. Pryor, and B. Dellinger: Radicals from the pyrolysis of tobacco; Energy & Fuels 19 (2005) 791–799.
  8. 8. Chouchane, S, J.B. Wooten, F.J. Tewes, A. Wittig, B.P. Muller, D. Veltel, and J. Diekmann: Involvement of semiquinone radicals in the in vitro cytotoxicity of cigarette mainstream smoke; Chem. Res. Toxicol. 19 (2006) 1602–1610.
  9. 9. Stohs, S.J., D. Bagchi, and M. Bagchi: Toxicity of trace elements in tobacco smoke; Inhal. Toxicol. 9 (1997) 867–890.
  10. 10. Yan, F., S. Williams, G.D. Griffin, R. Jagannathan, S.E. Plunkett, K.H. Shafer, and T. Vo-Dinh: Near-real-time determination of hydrogen peroxide generated from cigarette smoke; J. Environ. Monit. 7 (2005) 681–687.
  11. 11. Pethig, R., R.C. Gascoyne, J.A. McLaughlin, and A. Szent-Gyogyi: Ascorbate-quinone interactions: electrochemical, free radical and cytotoxic properties; Proc. Natl. Acad. Sci. USA 80 (1983) 129–132.
  12. 12. Leanderson, P. and C. Tagesson: Cigarette smoke-induced DNA-damage: role of hydroquinone and cate-chol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine; Chem. Biol. Interact. 75 (1990) 71–81.
  13. 13. Seike, K., M. Murata, S. Oikawa, Y. Hiraku, K. Hira-kawa, and S. Kawanishi: Oxidative DNA damage in-duced by benz[a]anthracene metabolites via redox cycles of quinone and unique non-quinone; Chem. Res. Toxicol. 16 (2003) 1470–1476.
  14. 14. Li, Y. and M.A. Trush: Oxidation of hydroquinone by copper: chemical mechanism and biological effects; Arch. Biochem. Biophys. 300 (1993) 346–355.
  15. 15. Ly, Y. and M.A. Trush: DNA damage resulting from the oxidation of hydroquinone by copper: role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation; Carcinogenesis 14 (1993) 1303–1311.
  16. 16. Roginsky, V.A., L.M. Pisarenko, W. Bors and C. Michel: The kinetics and thermodynamics of quinone-semiquinone-hydroquinone systems under physiolo-gical conditions; J. Chem. Soc., Perkin Trans. 2 (1999) 871–876.
  17. 17. Maroz, A. and O. Brede: Reaction of radicals with benzoquinone-addition of electron transfer, Radiat. Phys. Chem. 67 (2003) 275–278.
  18. 18. Nicolaou, K.C., S.A. Snyder, T. Montangnon and G. Vassilikogiannakis: The Diels-Alder reaction in total synthesis; Angew. Chem. Int. Ed. 41 (2002) pp 1668–1698.10.1002/1521-3773(20020517)41:10<;1668::AID-ANIE1668>3.0.CO;2-Z
  19. 19. Yates, P. and K. Switlak: The 1:1 and 2:1 adducts of cyclopentadiene with p-benzoquinone; Can. J. Chem. 68 (1990) 1894–1900.
  20. 20. Rustemeier, K., R. Stabbert, H.-J. Haussmann, E. Roemer, and E.L. Carmines: Evaluation of the poten-tial effects of ingredients added to cigarettes. Part 2: Chemical composition of mainstream smoke, Food Chem. Toxicol. 40 (2002) 93–104.
  21. 21. Counts, M. E., F.S. Hsu, and F.J. Tewes: Development of a commercial cigarette “market map” comparison methodology for evaluating new of non-conventional cigarettes; Reg. Toxicol. Pharmacol. (2006) 225–242.
  22. 22. Scholtzhauer, W.S. and O.T. Chortyk: Recent Advances in studies on the pyrosynthesis of cigarette smoke constituents, J. Anal. Appl. Pyrolysis 12 (1987) 193–222.
  23. 23. Zhuang, S., J.B. Paine, III, T.S. Sherwood, J.A. Fournier, K.B. Koller, Z. Luan, and C.E. Thomas, Jr.: Filters including segmented monolithic sorbent for gas-phase filtration; U.S. Patent number 6814786, November 19, 2004.
  24. 24. Bon Aire, A.B. and E.W. Robb, II: Use of Diels-Alder adducts as tobacco additives, U.S. Patent number 3,047,433 July 31, 1962.
  25. 25. Johnson, D., B. Quimby and J. Sullivan: An atomic emission detector for gas chromatography; Amer. Lab. October (1995) 1–5.
  26. 26. Webster, C. and M. Cooke: Use of an atomic emission detector to study the variation in elemental response for chlorine, carbon, and oxygen in phenols; J. High Resol. Chromatogr. 18 (1995) 319–322.
  27. 27. Quimby, B.D. and J.J. Sullivan: Evaluation of a micro-wave cavity, discharge tube, and gas flow system for combined gas chromatography-atomic emission detection; Anal. Chem. 62 (1990) 1027–1034.
  28. 28. Sullivan J.J. and B.D. Quimby: Characterization of computerized photodiode array spectrometer for gas chromatograph-atomic emission spectrometry; Anal. Chem. 62 (1990) 1034–1043.
  29. 29. Juillet, Y., E. Gilbert, A. Begos, and B. Bellier: Investigation of compound-independent calibration and partial molecular formula determination by gas chromatography-atomic-emission detection for charac-terization of organophosphorus and organosulfur agents related to the chemical weapons convention; Anal. Bioanal. Chem. 383 (2005) 848–856.
  30. 30. Quimby, B.D., P.C. Dryden, and J.J. Sullivan: Selective detection of stable-isotope labeled com-pounds using gas chromatography-emission spectro-metry, Synthesis and Applications of Isotopically Labeled Compounds, (1991) 1128–1132.
  31. 31. Quimby, B.D., P.A. Larson, and P.C. Dryden: A comparison of the HP G2350 AED versus HP 5921A AED for average values of MDL and selectivity for selected elements; HP Application Note 228-363, 1996.
  32. 32. Stevens, N.A., and M.F. Borgerding: Effect of column flow rate and sample injection mode on compound-independent calibration using gas chromatography with atomic emission detection; Anal. Chem. 70 (1998) 4223–4227.
  33. 33. Yu, J., L.T. Taylor, S. Aref, J.A. Bodnar, and M.F. Borgerding: Influence of puffing parameters and filter vent blocking condition on nicotine fate in a burning cigarette part 1. Full flavor cigarettes; Beitr. Tabak-forsch. Int. 22 (2006) 185–195.
  34. 34. Janak, K., C. Ostman, H. Carlsson, A. Bemgard, and A. Colmsjo: Instrument-induced effects in the analysis of polycyclic aromatic compounds by capillary gas chromatography with atomic emission detection (GC-AED); J. High Resol. Chromatogr. 17 (2004) 135–140.
  35. 35. Silverstein, R.M., G.C. Bassler, and T.C. Morrill: Spectrometric Identification of Organic Compounds, John Wiley, New York, 1999, pp. 1–419.
  36. 36. Stothers, J.B.: Carbon-13 NMR Spectroscopy, Aca-demic Press, New York, 1972, pp. 1–559.
  37. 37. Barsanti, K.C., W. Luo, L.M. Isabelle, J.F. Pankow and D.H. Peyton: Tobacco smoke particulate matter chemistry by NMR; Magn. Reson. Chem. 45 (2006) 167–170.
  38. 38. Schonher, H., H.-J. Klimisch and H.-P. Harket: Aging of cigarette smoke concentrate quantitative investigations of artifact formation by gas and particulate phase reactions; Beitr. Tabakforsch. 7 (1973) 18–23.
  39. 39. Einolf, W.N., R.N. Ferguson, J.F. Whidby, and J.F. DeBardeleben; Isolation and identification of 2,6-dimethyl and 2,2,6-trimethyl-4-piperidone, artifacts produced by the reaction of cigarette smoke conden-sate and acetone; Beitr. Tabakforsch. 9 (1978) 208–213.
  40. 40. U.S. Federal Trade Commission: Cigarettes and related matters. Carbon monoxide, “tar”, and nicotine content of cigarette smoke. Description of new machine and methods to be used in testing; Fed. Register 45 (1980) 46483-46487.
  41. 41. Stevenson, C.D., T.D. Halvorsen, and R.C. Reiter: Effect of 13C substitution on the solution electron affinity of p-benzoquinone; J. Am. Chem. Soc. 115 (1993) 12405–12408.
  42. 42. Van der Vilet, A.: Oxidative modifications of proteins and lipids by CS; in: Cigarette Smoke and Oxidative Stress, edited by B.B. Halliwell and H.E. Poulsen, Springer-Verlag, Berlin, 2006, pp 47–74.10.1007/3-540-32232-9_3
  43. 43. Colby College Web Site; www.colby.edu/chemistry (August 31, 2007).
  44. 44. Morrison, R.T. and R.N. Boyd: Organic Chemistry; Second Edition, Allyn and Bacon, Inc., Boston, USA, 1966.
  45. 45. Gillner, M., G.S. Moore, H. Cederburg, and K. Gustaf-sson: Environmental Health Criteria 157; World Health Organization, 1994, pp. 1–119.
  46. 46. Coleman, W.M.: Personal communication, 2007.
  47. 47. Yates, P. and K. Switlak: The 1:1 and 2:1 adducts of cyclopentadiene with p-benzoquinone; Can. J. Chem. 68 (1990) 1984–1990.
Language: English
Page range: 121 - 136
Submitted on: Oct 11, 2007
|
Accepted on: Oct 1, 2008
|
Published on: Dec 30, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 WM Coleman, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.