Have a personal or library account? Click to login
A Mathematical Model of Cigarette Smoldering Process Cover
By: P Chen  
Open Access
|Dec 2014

Abstract

A mathematical model for a smoldering cigarette has been proposed. In the analysis of the cigarette combustion and pyrolysis processes, a receding burning front is defined, which has a constant temperature (~450 °C) and divides the cigarette into two zones, the burning zone and the pyrolysis zone. The char combustion processes in the burning zone and the pyrolysis of virgin tobacco and evaporation of water in the pyrolysis zone are included in the model. The hot gases flow from the burning zone, are assumed to go out as sidestream smoke during smoldering. The internal heat transport is characterized by effective thermal conductivities in each zone. Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to agree with the experimental data. The model also predicts the coal length and the maximum coal temperatures during smoldering conditions. The model provides a relatively fast and efficient way to simulate the cigarette burning processes. It offers a practical tool for exploring important parameters for cigarette smoldering processes, such as tobacco components, properties of cigarette paper, and heat generation in the burning zone and its dependence on the mass burn rate.

Language: English
Page range: 265 - 271
Submitted on: Sep 3, 2001
Accepted on: May 31, 2002
Published on: Dec 30, 2014
Published by: Institut für Tabakforschung GmbH
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 P Chen, published by Institut für Tabakforschung GmbH
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.