Have a personal or library account? Click to login
Predictive Maps for the Species Heracleum mantegazzianum for the periods 2011–2040 and 2041–2070 in central Europe. Cover

Predictive Maps for the Species Heracleum mantegazzianum for the periods 2011–2040 and 2041–2070 in central Europe.

By: Lukáš Číhal  
Open Access
|Nov 2025

References

  1. Aiello–Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132
  2. Anderson, R. P., & Gonzalez, I. (2011): Species–specific tuning increases the accuracy of ecological niche models. Ecological Modelling, 222(15), 2796–2811 https://doi.org/10.1016/j.ecolmodel.2011.04.011
  3. AOPK ČR. (2025): Occurrence database of the Nature Conservation Agency of the Czech Republic. Accessed January 2025. Retrieved from https://portal.nature.cz
  4. Araújo, M. B., & Peterson, A. T. (2012): Uses and misuses of bioclimatic envelope modeling. Ecology, 93(7), 1527–1539. https://doi.org/10.1890/11–1930.1
  5. Booth, T. H. (2022): Checking bioclimatic variables that combine temperature and precipitation data before their use in species distribution models. Austral Ecology, 47(7), 1506–1514. https://doi.org/10.1111/aec.13234
  6. Cobos, M. E., Peterson, A. T., Barve, N., & Osorio–Olvera, L. (2019): kuenm: An R package for detailed development of ecological niche models using MaxEnt. PeerJ, 7, e6281. https://doi.org/10.7717/peerj.6281
  7. Elith, J., & Leathwick, J. R. (2009): Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  8. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011): A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472–4642.2010.00725.x
  9. Franklin, J. (2010): Mapping species distributions: Spatial inference and prediction. Cambridge University Press. https://doi.org/10.1017/CBO9780511810602
  10. GBIF.org (2025): GBIF Occurrence Download. Accessed via R package geodata (function sp_occurrence) on 17 January 2025.
  11. Guisan, A., & Thuiller, W. (2005): Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009. https://doi.org/10.1111/j.1461–0248.2005.00792.x
  12. Hijmans, R. J. (2023): raster: Geographic data analysis and modeling (R package version 3.6–26). Retrieved from https://CRAN.R–project.org/package=raster
  13. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2023): geodata: R package for downloading geospatial data (R package version 0.5–9). Retrieved from https://CRAN.R–project.org/package=geodata
  14. Kaláb, O. (2024): rndop: Access to the Data from The Species Occurrence Database of NCA CR (Czechia) in R (Version 0.2.1) [Computer software]. https://github.com/kalab-oto/rndop
  15. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria–Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017): Climatologies at high resolution for the Earth’s land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122
  16. Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria–Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2020): CHELSA V2.1: Downscaled climate data. Retrieved from https://chelsa–climate.org/
  17. Lê, S., Josse, J., & Husson, F. (2008): FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
  18. Lockwood, J. L., Hoopes, M. F., & Marchetti, M. P. (2013): Invasion ecology (2nd ed.). Wiley–Blackwell.
  19. Mesgaran, M. B., Cousens, R. D., & Webber, B. L. (2014): Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models. Diversity and Distributions, 20(10), 1147-1159.
  20. Moravcová, L., Pyšek, P., Jarošík, V., & Pergl, J. (2006): Seasonal pattern of germination and seed longevity in the invasive species Heracleum mantegazzianum. Preslia, 78, 287–301.
  21. O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2017): The roads ahead: Narratives for Shared Socioeconomic Pathways describing world futures in the 21st century. Global Environmental Change, 42, 169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004
  22. OpenStreetMap contributors. (2024): OpenStreetMap Standard layer [basemap]. Retrieved via QuickMapServices plugin in QGIS 3.34. Available at: https://www.openstreetmap.org/copyright
  23. Pearson, R. G., & Dawson, T. P. (2003): Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/j.1466–822X.2003.00042.x
  24. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007): Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365–2699.2006.01594.x
  25. Phillips, S. J., & Dudík, M. (2008): Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906–7590.2008.5203.x
  26. Phillips, S. J., Dudík, M., & Schapire, R. E. (n.d.): MaxEnt software for modeling species niches and distributions (Version 3.4.4) [Computer software]. American Museum of Natural History. Retrieved January 21, 2025, from http://biodiversityinformatics.amnh.org/open_source/maxent/
  27. Pyšek, P., Cock, M. J. W., Nentwig, W., & Ravn, H. P. (Eds.). (2007a): Ecology and management of giant hogweed (Heracleum mantegazzianum). CABI Publishing. https://doi.org/10.1079/9781845932060.0000
  28. Pyšek, P., Krinke, L., Jarošík, V., Perglová, I., Pergl, J., & Moravcová, L. (2007b): Timing and extent of tissue removal affect reproduction characteristics of an invasive species Heracleum mantegazzianum. Biological Invasions, 9(3), 335–351. https://doi.org/10.1007/s10530–006–9038–0
  29. Pyšek, P., Lambdon, P.W., Arianoutsou, M., Kühn, I., Pino, J., Winter, M. (2009): Alien vascular plants of Europe In: Hulme, P.E., Nentwig, W., Pyšek, P., Vilà, M. (eds.) Handbook of alien species in Europe. DAISIE Invading Nature – Springer Series in Invasion Ecology 3 Springer, Dordrecht, 43–61.
  30. QGIS Development Team. (2024): QGIS Geographic Information System. Open geospatial foundation. Retrieved from https://www.qgis.org
  31. R Core Team. (2024): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R–project.org/
  32. Swets, J. A. (1988): Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615
  33. Thiele, J., & Otte, A. (2007): Impact of Heracleum mantegazzianum on invaded vegetation and human activities. In P. Pyšek, M. J. W. Cock, W. Nentwig, & H. P. Ravn (Eds.), Ecology and management of giant hogweed (Heracleum mantegazzianum) (pp. 144–156). CABI. https://doi.org/10.1079/9781845932060.0144
  34. Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H., & Antonelli, A. (2019): CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/10.1111/2041–210X.13152
DOI: https://doi.org/10.2478/cszma-2025-0008 | Journal eISSN: 2336-3207 | Journal ISSN: 2336-3193
Language: English
Page range: 124 - 137
Published on: Nov 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Lukáš Číhal, published by Silesian Museum in Opava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.