Have a personal or library account? Click to login
Effective Spam Detection with Machine Learning  Cover

References

  1. Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., & Shah, T. (2022). Machine Learning Techniques for Spam Detection in Email and IoT Platforms: Analysis and Research Challenges. Security and Communication Networks, 1862888. https://doi.org/10.1155/2022/1862888
  2. Alghoul, A., Ajrami, S. A., Jarousha, G. A., & Abu-Naser, S. S. (2018, November 30). Email Classification Using Artificial Neural Network. International Journal for Academic Development, 2(11), 8–14.
  3. Awad, W. A., & ELseuofi, S. M. (2011). Machine learning methods for spam e-mail classification. International Journal of Computer Science and Information Technologies, 3(1), 173–184.
  4. Bagić Babac, M. (2023). Emotion analysis of user reactions to online news. Information Discovery and Delivery, 51(2), 179–193. https://doi.org/10.1108/IDD-04-2022-0027
  5. Bassiouni, M., Ali, M., & El-Dahshan, E. A. (2018). Ham and spam e-mails classification using machine learning techniques. Journal of Applied Security Research, 13(3), 315–331. https://doi.org/10.1080/19361610.2018.1463136
  6. Bhuiyan, H., Ashiquzzaman, A., Juthi, T. I., Biswas, S., & Ara, J. (2018). A survey of existing e-mail spam filtering methods considering machine learning techniques. Global Journal of Computer Science and Technology, 18(2), 20–29.
  7. Blanzieri, E., & Bryl, A. (2008). A survey of learning-based techniques of email spam filtering, Artificial Intelligence Review, 29(1), 63–92. https://doi.org/10.1007/s10462-009-9109-6
  8. Blei, D., Ng, A., & Jordan, M. (2001). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, 601–608. https://doi.org/10.5555/944919.944937
  9. Brzić, B., Botički, I., & Bagić Babac, M. (2023). Detecting Deception Using Natural Language Processing and Machine Learning in Datasets on COVID-19 and Climate Change. Algorithms, 16, 221. https://doi.org/10.3390/a16050221
  10. Cranor, L. F., & LaMacchia, B. A. (1998). Spam!. Communications of the ACM, 41(8), 74–83. https://doi.org/10.1145/280324.280336
  11. Cvitanović, I., & Bagić Babac, M. (2022). Deep Learning with Self-Attention Mechanism for Fake News Detection. In M. Lahby, A.S.K. Pathan, Y. Maleh, & W.M.S. Yafooz (Eds.), Combating Fake News with Computational Intelligence Techniques (pp. 205–229). Springer, Switzerland.
  12. Čemeljić, H., & Bagić Babac, M. (2023). Preventing Security Incidents on Social Networks: An Analysis of Harmful Content Dissemination Through Applications. Police and Security, 32(3), 239 – 270. https://doi.org/10.59245/ps.32.3.1
  13. Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., & Ajibuwa, O. E. (2019). Machine learning for email spam filtering: review, approaches and open research problems. Heliyon, 5(6), e01802. https://doi.org/10.1016/j.heliyon.2019.e01802
  14. Garg, P., & Girdhar, N. (2021). A Systematic Review on Spam Filtering Techniques based on Natural Language Processing Framework. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India https://doi.org/10.1109/confluence51648.2021.9377042
  15. Garg, K. D., Shekhar, S., Kumar, A., Goyal, V., Sharma, B., Chengoden, R., & Srivastava, G. (2022). Framework for Handling Rare Word Problems in Neural Machine Translation System Using Multi-Word Expressions. Applied Sciences, 12(21), 11038. https://doi.org/10.3390/app122111038
  16. Goldberg, Y. (2014). word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv:1402.3722 [cs.CL]. https://doi.org/10.48550/arXiv.1402.3722
  17. Hijawi, W., Faris, H., Alqatawna, J., Al-Zoubi, A. M., & Aljarah, I. (2017). Improving email spam detection using content based feature engineering approach. 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 2017, 1–6 https://doi.org/10.1109/aeect.2017.8257764
  18. Kaddoura, S., Chandrasekaran, G., Popescu, D. E., & Duraisamy, J. H. (2022). A systematic literature review on spam content detection and classification. PeerJ Computer Science, 8, e830. https://doi.org/10.7717/peerj-cs.830
  19. Kaggle. (2023). Email Spam Classification Dataset. Available at: https://www.kaggle.com/datasets/neildavid/email-spam-classification-from-shantanudhakad/code
  20. Konagala, V., & Bano, S. (2020). Fake News Detection Using Deep Learning: Supervised Fake News Detection Analysis in Social Media With Semantic Similarity Method. In Thomas, J. J., Karagoz, P., Ahamed, B. B., & Vasant, P. (Eds.). (2020). Deep learning techniques and optimization strategies in big data analytics. IGI Global. 166–177. https://doi.org/10.4018/978-1-7998-1192-3.ch011
  21. Kontsewaya, Y., Antonov, E., & Artamonov, A. (2021). Evaluating the effectiveness of machine learning methods for spam detection. Procedia Computer Science, 190, 479–486. https://doi.org/10.1016/j.procs.2021.06.056
  22. Kudupudi, N. I. K. H. I. L., & Nair, S. (2021). Spam message detection using logistic regression. International Journal of Advanced Computer Science and Applications, 9(9), 815–818.
  23. Kumar, N., Sonowal, S., & Nishant. (2020). Email spam detection using machine learning algorithms. Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 108–113. https://doi.org/10.1109/ICIRCA48905.2020.9183098
  24. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
  25. Li, J., Cardie, C., & Li, S. (2013). Topic spam: a topic-model based approach for spam detection. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2, 217–221.
  26. Marijić, A., & Bagić Babac, M. (2023). Predicting song genre with deep learning. Global Knowledge, Memory and Communication. Ahead-of-print. https://doi.org/10.1108/GKMC-08-2022-0187
  27. Méndez, J. R., Cotos-Yañez, T. R., & Ruano-Ordas, D. (2019). A new semantic-based feature selection method for spam filtering. Applied Soft Computing, 76, 89–104. https://doi.org/10.1016/j.asoc.2018.12.008
  28. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space, arXiv:1301.3781.[cs.CL]. https://doi.org/10.48550/arXiv.1301.3781
  29. Mohammed, S., Mohammed, O., Fiaidhi, J., Fong, S., & Kim, T. H. (2013). Classifying unsolicited bulk email (UBE) using python machine learning techniques. International Journal of Hybrid Information Technology, 6(1), 43–56.
  30. Možnik, D., Delija, D., Tulčić, D., & Galinec, D. (2023). Cybersecurity and Cyber Defense Insights: The Complementary Conceptual model of Cyber resilience. ENTRENOVA-ENTerprise REsearch InNOVAtion, 9(1), 1–12. https://doi.org/10.54820/entrenova-2023-0001
  31. Nandhini, S., & Marseline. K. S, J. (2020). Performance Evaluation of Machine Learning Algorithms for Email Spam Detection. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1–4. https://doi.org/10.1109/ic-ETITE47903.2020.312
  32. Olatunji, S. O. (2017). Extreme Learning machines and Support Vector Machines models for email spam detection. Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, Windsor, Canada, April 2017. https://doi.org/10.1109/CCECE.2017.7946806
  33. Orred, K. (2023). 2023 Spam Text Statistics: Are Spam Texts on the Rise? Available at: https://www.text-em-all.com/blog/spam-text-statistics
  34. Parveen, P., & Halse, P. G. (2016). Spam Mail Detection using Classification. International Journal of Advanced Research in Computer and Communication Engineering, 5(6), 347–349.
  35. Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv:2010.16061 [cs.LG] https://doi.org/10.48550/arXiv.2010.16061
  36. Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242–268. https://doi.org/10.1016/j.neucom.2016.06.014
  37. Provost, J. (1999). Naive-Bayes vs. Rule-Learning in Classification of Email. Available at: https://www.cs.utexas.edu/ftp/AI-Lab/tech-reports/UT-AI-TR-99-284.pdf
  38. Puh, K., & Bagić Babac, M. (2023a). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078
  39. Puh, K., & Bagić Babac, M. (2023b). Predicting stock market using natural language processing. American Journal of Business, 38(2), 41–61. https://doi.org/10.1108/AJB-08-2022-0124
  40. Rahmad, F., Suryanto, Y., & Ramli, K. (2020). Performance comparison of anti-spam technology using confusion matrix classification. In IOP Conference Series: Materials Science and Engineering, 879(1), 012076. https://doi.org/10.1088/1757-899X/879/1/012076
  41. Sadia, A., Bashir, F., Khan, R. Q., Bashir, A., & Khalid, A. (2023). Comparison of Machine Learning Algorithms for Spam Detection. Journal of Advances in Information Technology, 14(2), 178–184. https://doi.org/10.12720/jait.14.2.178-184
  42. Sahoo, S. R., & Gupta, B. B. (2021). Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100, 106983. https://doi.org/10.1016/j.asoc.2020.106983
  43. Shahariar, G. M., Biswas, S., Omar, F., Shah, F. M. & Hassan, S. B., (2019). Spam Review Detection Using Deep Learning. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Vancouver, BC, Canada. 27–33. https://doi.org/10.1109/IEMCON.2019.8936148
  44. Sheneamer, A. (2021). Comparison of Deep and Traditional Learning Methods for Email Spam Filtering. International Journal of Advanced Computer Science and Applications (IJACSA), 12(1). https://doi.org/10.14569/IJACSA.2021.0120164
  45. Siddique, Z. B., Khan, M. A., Din, I. U., Almogren, A., Mohiuddin, I., & Nazir, S. (2021). Machine Learning-Based Detection of Spam Emails. Scientific Programming, 2021, 6508784. https://doi.org/10.1155/2021/6508784
  46. Sinha, A., & Singh, S. (2020). A Detailed study on email spam filtering techniques. International Journal of Data Science and Analytics, 10(3), 1–34.
  47. Tembhurne, J. V., Almin, M. M., & Diwan, T. (2022). Mc-DNN: Fake News Detection Using Multi-Channel Deep Neural Networks. International Journal on Semantic Web and Information Systems (IJSWIS), 18(1), 1–20. https://doi.org/10.4018/ijswis.295553
  48. uSMS-GH.com. (2022). Spam text. Available: https://usmsgh.com/spam-text/
  49. Vrigazova, B. (2021). The proportion for splitting data into training and test set for the bootstrap in classification problems. Business Systems Research: International Journal of the Society for Advancing Innovation and Research in Economy, 12(1), 228–242. https://doi.org/10.2478/bsrj-2021-0015
  50. Vyas, T., Prajapati, P., & Gadhwal, s. (2015). A survey and evaluation of supervised machine learning techniques for spam e-mail filtering. 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 1–7, http://doi.org/10.1109/ICECCT.2015.7226077
  51. Yan, J., & Lee, J. (2005). Degradation Assessment and Fault Modes Classification Using Logistic Regression, ASME. Journal of Manufacturing Science and Engineering, 127(4), 912–914. https://doi.org/10.1115/1.1962019
Language: English
Page range: 43 - 64
Submitted on: Oct 11, 2023
Accepted on: Dec 28, 2023
Published on: Feb 26, 2024
Published by: Međimurje University of Applied Sciences in Čakovec
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Gordana Borotić, Lara Granoša, Jurica Kovačević, Marina Bagić Babac, published by Međimurje University of Applied Sciences in Čakovec
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.