References
- Ahmed, N., Amin, R., Aldabbas, H., Koundal, D., Alouffi, B., & Shah, T. (2022). Machine Learning Techniques for Spam Detection in Email and IoT Platforms: Analysis and Research Challenges. Security and Communication Networks, 1862888. https://doi.org/10.1155/2022/1862888
- Alghoul, A., Ajrami, S. A., Jarousha, G. A., & Abu-Naser, S. S. (2018, November 30). Email Classification Using Artificial Neural Network. International Journal for Academic Development, 2(11), 8–14.
- Awad, W. A., & ELseuofi, S. M. (2011). Machine learning methods for spam e-mail classification. International Journal of Computer Science and Information Technologies, 3(1), 173–184.
- Bagić Babac, M. (2023). Emotion analysis of user reactions to online news. Information Discovery and Delivery, 51(2), 179–193. https://doi.org/10.1108/IDD-04-2022-0027
- Bassiouni, M., Ali, M., & El-Dahshan, E. A. (2018). Ham and spam e-mails classification using machine learning techniques. Journal of Applied Security Research, 13(3), 315–331. https://doi.org/10.1080/19361610.2018.1463136
- Bhuiyan, H., Ashiquzzaman, A., Juthi, T. I., Biswas, S., & Ara, J. (2018). A survey of existing e-mail spam filtering methods considering machine learning techniques. Global Journal of Computer Science and Technology, 18(2), 20–29.
- Blanzieri, E., & Bryl, A. (2008). A survey of learning-based techniques of email spam filtering, Artificial Intelligence Review, 29(1), 63–92. https://doi.org/10.1007/s10462-009-9109-6
- Blei, D., Ng, A., & Jordan, M. (2001). Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, 601–608. https://doi.org/10.5555/944919.944937
- Brzić, B., Botički, I., & Bagić Babac, M. (2023). Detecting Deception Using Natural Language Processing and Machine Learning in Datasets on COVID-19 and Climate Change. Algorithms, 16, 221. https://doi.org/10.3390/a16050221
- Cranor, L. F., & LaMacchia, B. A. (1998). Spam!. Communications of the ACM, 41(8), 74–83. https://doi.org/10.1145/280324.280336
- Cvitanović, I., & Bagić Babac, M. (2022). Deep Learning with Self-Attention Mechanism for Fake News Detection. In M. Lahby, A.S.K. Pathan, Y. Maleh, & W.M.S. Yafooz (Eds.), Combating Fake News with Computational Intelligence Techniques (pp. 205–229). Springer, Switzerland.
- Čemeljić, H., & Bagić Babac, M. (2023). Preventing Security Incidents on Social Networks: An Analysis of Harmful Content Dissemination Through Applications. Police and Security, 32(3), 239 – 270. https://doi.org/10.59245/ps.32.3.1
- Dada, E. G., Bassi, J. S., Chiroma, H., Adetunmbi, A. O., & Ajibuwa, O. E. (2019). Machine learning for email spam filtering: review, approaches and open research problems. Heliyon, 5(6), e01802. https://doi.org/10.1016/j.heliyon.2019.e01802
- Garg, P., & Girdhar, N. (2021). A Systematic Review on Spam Filtering Techniques based on Natural Language Processing Framework. 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India https://doi.org/10.1109/confluence51648.2021.9377042
- Garg, K. D., Shekhar, S., Kumar, A., Goyal, V., Sharma, B., Chengoden, R., & Srivastava, G. (2022). Framework for Handling Rare Word Problems in Neural Machine Translation System Using Multi-Word Expressions. Applied Sciences, 12(21), 11038. https://doi.org/10.3390/app122111038
- Goldberg, Y. (2014). word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv:1402.3722 [cs.CL]. https://doi.org/10.48550/arXiv.1402.3722
- Hijawi, W., Faris, H., Alqatawna, J., Al-Zoubi, A. M., & Aljarah, I. (2017). Improving email spam detection using content based feature engineering approach. 2017 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Aqaba, Jordan, 2017, 1–6 https://doi.org/10.1109/aeect.2017.8257764
- Kaddoura, S., Chandrasekaran, G., Popescu, D. E., & Duraisamy, J. H. (2022). A systematic literature review on spam content detection and classification. PeerJ Computer Science, 8, e830. https://doi.org/10.7717/peerj-cs.830
- Kaggle. (2023). Email Spam Classification Dataset. Available at: https://www.kaggle.com/datasets/neildavid/email-spam-classification-from-shantanudhakad/code
- Konagala, V., & Bano, S. (2020). Fake News Detection Using Deep Learning: Supervised Fake News Detection Analysis in Social Media With Semantic Similarity Method. In Thomas, J. J., Karagoz, P., Ahamed, B. B., & Vasant, P. (Eds.). (2020). Deep learning techniques and optimization strategies in big data analytics. IGI Global. 166–177. https://doi.org/10.4018/978-1-7998-1192-3.ch011
- Kontsewaya, Y., Antonov, E., & Artamonov, A. (2021). Evaluating the effectiveness of machine learning methods for spam detection. Procedia Computer Science, 190, 479–486. https://doi.org/10.1016/j.procs.2021.06.056
- Kudupudi, N. I. K. H. I. L., & Nair, S. (2021). Spam message detection using logistic regression. International Journal of Advanced Computer Science and Applications, 9(9), 815–818.
- Kumar, N., Sonowal, S., & Nishant. (2020). Email spam detection using machine learning algorithms. Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 108–113. https://doi.org/10.1109/ICIRCA48905.2020.9183098
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
- Li, J., Cardie, C., & Li, S. (2013). Topic spam: a topic-model based approach for spam detection. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2, 217–221.
- Marijić, A., & Bagić Babac, M. (2023). Predicting song genre with deep learning. Global Knowledge, Memory and Communication. Ahead-of-print. https://doi.org/10.1108/GKMC-08-2022-0187
- Méndez, J. R., Cotos-Yañez, T. R., & Ruano-Ordas, D. (2019). A new semantic-based feature selection method for spam filtering. Applied Soft Computing, 76, 89–104. https://doi.org/10.1016/j.asoc.2018.12.008
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space, arXiv:1301.3781.[cs.CL]. https://doi.org/10.48550/arXiv.1301.3781
- Mohammed, S., Mohammed, O., Fiaidhi, J., Fong, S., & Kim, T. H. (2013). Classifying unsolicited bulk email (UBE) using python machine learning techniques. International Journal of Hybrid Information Technology, 6(1), 43–56.
- Možnik, D., Delija, D., Tulčić, D., & Galinec, D. (2023). Cybersecurity and Cyber Defense Insights: The Complementary Conceptual model of Cyber resilience. ENTRENOVA-ENTerprise REsearch InNOVAtion, 9(1), 1–12. https://doi.org/10.54820/entrenova-2023-0001
- Nandhini, S., & Marseline. K. S, J. (2020). Performance Evaluation of Machine Learning Algorithms for Email Spam Detection. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1–4. https://doi.org/10.1109/ic-ETITE47903.2020.312
- Olatunji, S. O. (2017). Extreme Learning machines and Support Vector Machines models for email spam detection. Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, Windsor, Canada, April 2017. https://doi.org/10.1109/CCECE.2017.7946806
- Orred, K. (2023). 2023 Spam Text Statistics: Are Spam Texts on the Rise? Available at: https://www.text-em-all.com/blog/spam-text-statistics
- Parveen, P., & Halse, P. G. (2016). Spam Mail Detection using Classification. International Journal of Advanced Research in Computer and Communication Engineering, 5(6), 347–349.
- Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv:2010.16061 [cs.LG] https://doi.org/10.48550/arXiv.2010.16061
- Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242–268. https://doi.org/10.1016/j.neucom.2016.06.014
- Provost, J. (1999). Naive-Bayes vs. Rule-Learning in Classification of Email. Available at: https://www.cs.utexas.edu/ftp/AI-Lab/tech-reports/UT-AI-TR-99-284.pdf
- Puh, K., & Bagić Babac, M. (2023a). Predicting sentiment and rating of tourist reviews using machine learning. Journal of Hospitality and Tourism Insights, 6(3), 1188–1204. https://doi.org/10.1108/JHTI-02-2022-0078
- Puh, K., & Bagić Babac, M. (2023b). Predicting stock market using natural language processing. American Journal of Business, 38(2), 41–61. https://doi.org/10.1108/AJB-08-2022-0124
- Rahmad, F., Suryanto, Y., & Ramli, K. (2020). Performance comparison of anti-spam technology using confusion matrix classification. In IOP Conference Series: Materials Science and Engineering, 879(1), 012076. https://doi.org/10.1088/1757-899X/879/1/012076
- Sadia, A., Bashir, F., Khan, R. Q., Bashir, A., & Khalid, A. (2023). Comparison of Machine Learning Algorithms for Spam Detection. Journal of Advances in Information Technology, 14(2), 178–184. https://doi.org/10.12720/jait.14.2.178-184
- Sahoo, S. R., & Gupta, B. B. (2021). Multiple features based approach for automatic fake news detection on social networks using deep learning. Applied Soft Computing, 100, 106983. https://doi.org/10.1016/j.asoc.2020.106983
- Shahariar, G. M., Biswas, S., Omar, F., Shah, F. M. & Hassan, S. B., (2019). Spam Review Detection Using Deep Learning. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Vancouver, BC, Canada. 27–33. https://doi.org/10.1109/IEMCON.2019.8936148
- Sheneamer, A. (2021). Comparison of Deep and Traditional Learning Methods for Email Spam Filtering. International Journal of Advanced Computer Science and Applications (IJACSA), 12(1). https://doi.org/10.14569/IJACSA.2021.0120164
- Siddique, Z. B., Khan, M. A., Din, I. U., Almogren, A., Mohiuddin, I., & Nazir, S. (2021). Machine Learning-Based Detection of Spam Emails. Scientific Programming, 2021, 6508784. https://doi.org/10.1155/2021/6508784
- Sinha, A., & Singh, S. (2020). A Detailed study on email spam filtering techniques. International Journal of Data Science and Analytics, 10(3), 1–34.
- Tembhurne, J. V., Almin, M. M., & Diwan, T. (2022). Mc-DNN: Fake News Detection Using Multi-Channel Deep Neural Networks. International Journal on Semantic Web and Information Systems (IJSWIS), 18(1), 1–20. https://doi.org/10.4018/ijswis.295553
- uSMS-GH.com. (2022). Spam text. Available: https://usmsgh.com/spam-text/
- Vrigazova, B. (2021). The proportion for splitting data into training and test set for the bootstrap in classification problems. Business Systems Research: International Journal of the Society for Advancing Innovation and Research in Economy, 12(1), 228–242. https://doi.org/10.2478/bsrj-2021-0015
- Vyas, T., Prajapati, P., & Gadhwal, s. (2015). A survey and evaluation of supervised machine learning techniques for spam e-mail filtering. 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 1–7, http://doi.org/10.1109/ICECCT.2015.7226077
- Yan, J., & Lee, J. (2005). Degradation Assessment and Fault Modes Classification Using Logistic Regression, ASME. Journal of Manufacturing Science and Engineering, 127(4), 912–914. https://doi.org/10.1115/1.1962019