Have a personal or library account? Click to login
The Effect of Polymer Waste Addition on the Quality of Concrete Composite Cover

The Effect of Polymer Waste Addition on the Quality of Concrete Composite

By: Alina Pietrzak  
Open Access
|Dec 2021

References

  1. Aggarwal, Y., Siddique, R., 2014. Microstructure and properties of concrete using bottom ash and waste foundry sand as partialreplacement of fine aggregates. Construction and Building Materiasl, 54, 210–223.10.1016/j.conbuildmat.2013.12.051
  2. Albano, C., Camacho, N., Reyes, J., Feliu, J.L., Herna´ndez, M., 2005. Influence of scrap rubber to Portland I concrete composites: destructive and non-destructive testing, Compos. Struct. 71, 439–446.10.1016/j.compstruct.2005.09.037
  3. Babu, K. G., Babu, D. S., 2003. Behaviour of lightweight expanded polystyrene concrete containing silica fume, Cement and Concrete Research, 33, 755–762.10.1016/S0008-8846(02)01055-4
  4. Babu, D. S., Babu, K. G., Wee, T., 2005. Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cement and Concrete Research, 35, 1218–1223.10.1016/j.cemconres.2004.11.015
  5. Babu, D.S., Babu, K.G., Tiong-Huan, W., 2006. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete, Cement and Concrete Composites, 28, 520–527.10.1016/j.cemconcomp.2006.02.018
  6. Balaha, M.M., Badawy, A.A.M., Hashish, M., 2007. Effect of using ground tire rubber as fine aggregate on the behaviour of concrete mixes, Indian J. Eng. Mater. Sci. 14, 427–435.
  7. Bostanci, S.C., Limbachiya, M., Kew, H., 2016. Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties. Construction and Building Materiasl, 128, 324–340.10.1016/j.conbuildmat.2016.10.095
  8. Batayneh, Malek K., Marie, Iqbal, Asi, Ibrahim, 2008. Promoting the use of crumb rubber concrete in developing countries, Waste Manage. 28, 2171–2176.10.1016/j.wasman.2007.09.03518956487
  9. Bravo, M.l, de Brito, J., 2012. Concrete made with used tyre aggregate: durability-related performance, J. Clean. Prod. 25, 42–50.10.1016/j.jclepro.2011.11.066
  10. Chaudhary, M., Srivastava, V., Agarwal, V., 2014. Effect of waste low density polyethylene on mechanical properties of concrete, J. Acad. Ind. Res., 3, 123.
  11. Chen, B., Liu, J., 2004. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber, Cement and Concrete Research, 34, 1259–1263.10.1016/j.cemconres.2003.12.014
  12. Choi, Y. W., Moon, D. J., Chung, J. S., Cho, S. K., 2005. Effects of waste PET bottlers aggregate on the properties of concrete, Cement Concrete Research, 35, 776–781.10.1016/j.cemconres.2004.05.014
  13. Choi, Y. W., Moon, D. J., Kim, Y. J., Lachemi, M., 2009. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Construction and Building Materiasl, 23, 2829–2835.10.1016/j.conbuildmat.2009.02.036
  14. Choi, S. -J., Kim, Y. -U., Oh, T.-G., Cho, B.-S, 2020. Compressive Strength, Chloride Ion Penetrability, and Carbonation Characteristic of Concrete with Mixed Slag Aggregate. Materials, 13, 94010.3390/ma13040940707872532093204
  15. Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., Incarnato, L., 2010. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete, Compos. Struct., 93, 2368–2374.10.1016/j.compstruct.2011.03.025
  16. Fraternali, F., Spadea, S., Berardi, V. P., 2014. Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materiasl, 61, 293–302.10.1016/j.conbuildmat.2014.03.019
  17. Halicka, A., Ogrodnik, P., Zegardlo, B., 2013. Using ceramic sanitary ware waste as concrete aggregate. Construction and Building Materiasl, 48, 295–305.10.1016/j.conbuildmat.2013.06.063
  18. Han, C.-G., Hwang, Y.-S., Yang, S.-H., Gowripalan, N., 2005. Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement, Cem. Concr. Res. 35, 1747–1753.10.1016/j.cemconres.2004.11.013
  19. Hsie, M., Tu, C., Song, P., 2008. Mechanical properties of polypropylene hybrid fiber-reinforced concrete, Mater. Sci. Eng.: A 494, 153–157.10.1016/j.msea.2008.05.037
  20. Kan, A., Demirbog˘a, R., 2009. A novel material for lightweight concrete production, Cement and Concrete Composites, 31, 489–495.10.1016/j.cemconcomp.2009.05.002
  21. Kishore, K., Gupta, N., 2020. Application of domestic & industrial waste materials in concrete: A review. Materials Today Proceedings, 26, 2926–2931.10.1016/j.matpr.2020.02.604
  22. Khadakbhavi, B., Reddy, D.V.V., Ullagaddi, D., 2010. Effect of aspect ratios of waste Hdpe fibres on the properties of fibres on fiber reinforced concrete, Res. J. Eng. Technol., 3, 13–21.
  23. Kołtuńczyk E., Nowicka G., 2007. Effect of poly(sodium- 4-styrenesulphonate) additives on properties of cement suspensions, Proceedings of International Scientific Conference „Surfactants and Dispersed Systems in Theory and Practice”, Ed: K.A. Wilk, PALMAPress, Wrocław, 533–536.
  24. Kosior-Kazberuk M., Berkowski P., 2016. Fracture Mechanics Parameters of Fine Grained Concrete with Polypropylene Fibres, Proc. Eng. 161, 157-162.10.1016/j.proeng.2016.08.515
  25. Madandoust, R., Ranjbar, M. M., Mousavi, S. Y., 2011. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Construction and Building Materiasl, 25, 3721–3731.10.1016/j.conbuildmat.2011.04.018
  26. Martínez-Barrera, G., Vigueras-Santiago, E., Hernández-López, S., Brostow, W., Menchaca-Campos, C., 2005. Mechanical improvement of concrete by irradiated polypropylene fibers, Polym. Eng. Sci. 45, 1426–1431.10.1002/pen.20418
  27. Martínez-Barrera, G., Menchaca-Campos, C., Hernández-López, S., Vigueras-Santiago, E., Brostow, W., 2006. Concrete reinforced with irradiated nylon fibers, J. Mater. Res. 21, 484–491.10.1557/jmr.2006.0058
  28. Martínez-Barrera, G., Ureña-Nuñez, F., Gencel, O., Brostow, W., 2011. Mechanical properties of polypropylene-fiber reinforced concrete after gamma irradiation, Compos. A Appl. Sci. Manuf. 42, 567–572.10.1016/j.compositesa.2011.01.016
  29. Nibudey, R., Nagarnaik, P., Parbat, D., Pande, A., 2013. Strength and fracture properties of post consumed waste plastic fiber reinforced concrete, International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, (IJCSEIERD), 9–16.
  30. Naik, T. R., Singh, S. S., Huber, C. O., Brodersen, B.,S., 1996. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res., 26, 1489–1492.10.1016/0008-8846(96)00135-4
  31. Onuaguluchi, O., Panesar, D.K., 2014. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume, J. Clean. Prod. 82, 125–131.10.1016/j.jclepro.2014.06.068
  32. Pietrzak A., 2019. The effect of adding slag, achieved from wastewater sludge incineration in fluided-bed furnace, on the quality of concrete. Quality Production Improvement, 1, 244-25010.2478/cqpi-2019-0033
  33. Pietrzak, A., Ulewicz, M., 2021. Properties and Structure of Concretes Doped with Production Waste of Thermoplastic Elastomers from the Production of Car Floor Mats. Materials, 14, 87210.3390/ma14040872791859633670384
  34. Ochi, T., Okubo, S., Fukui, K., 2007. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29, 448–455.10.1016/j.cemconcomp.2007.02.002
  35. Pelisser, F., Montedo, O.R.K., Gleize, P.J.P., Roman, H.R., 2012. Mechanical properties of recycled PET fibers in concrete, Materials Research, 15, 679–686.10.1590/S1516-14392012005000088
  36. Pietrzak, A., Ulewicz, M., 2019, The influence of addition of CRT Glass cullet on selected parameters of concrete composites. 2nd International Conference on the Sustainable Energy and Environmental Development IOP Conf. Series: Earth and Environmental Science, 214, Krakow10.1088/1755-1315/214/1/012006
  37. Royer, B., R. M. N. de Assuncao, Oliveira J. S., Filho G. R., L. A. de Castro Motta, 2005. Synthesis, characterization and application of the sodium poly(styrenesulfonate) produced from waste polystyrene cups as an admixture in concrete, Journal of Applied Polymer Science, 96, 1534–1538.10.1002/app.21528
  38. Sabaa, B., Ravindrarajah, R. S., 1997. Engineering properties of lightweight concrete containing crushed expanded polystyrene waste, In: Fall Meeting, Symposium MM, Advances in Materials for Cementitious Composites December 1997. Materials Research Society, 1–3.
  39. Saikia, N., Ferreira, L., de Brito, J., 2012. Influence of curing conditions on the mechanical performance of concrete containing recycled plastic aggregate. Construction and Building Materiasl, 36, 196–204.10.1016/j.conbuildmat.2012.02.098
  40. Saikia, N., Silva, R., De Brito, J., 2013. Influence of curing conditions on the durability-related performance of concrete made with selected plastic waste aggregates, Cement and Concrete Composites, 35, 23–31.10.1016/j.cemconcomp.2012.08.017
  41. Saikia, N., de Brito, J., 2013. Waste polyethylene terephthalate as an aggregate in concrete. Materials Research, 16, 341–350.10.1590/S1516-14392013005000017
  42. Song, P., Hwang, S., Sheu, B., 2005. Strength properties of nylon-and polypropylenefiber-reinforced concretes, Cem. Concr. Res. 35, 1546–1550.10.1016/j.cemconres.2004.06.033
  43. Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., Nikbin, I. M., 2013. On the mechanical properties of concrete containing waste PET particles, Construction and Building Materiasl, 47, 1302-130810.1016/j.conbuildmat.2013.06.041
  44. Ulewicz, M., Halbiniak, J., 2016. Application of waste from utilitarian ceramics for production of cement mortar and concrete. Physicochemical Problems of Mineral Processing, 52, 1002–1010.
  45. Wang, Y., Zureick, A.-H., Cho, B.S., Scott, D., 1994. Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste. J. Mater. Sci., 29, 4191–4199.10.1007/BF00414198
  46. Wang, Y., Wu, H., Li, V. C., 2000. Concrete reinforcement with recycled fibers, J. Mater. Civ. Eng., 12, 314–319.10.1061/(ASCE)0899-1561(2000)12:4(314)
  47. Walczak, P., Małolepszy, J., Reben, M., Rzepa, K., 2015. Mechanical properties of concrete mortar based on mixture of CRT glass cullet and fluidized fly ash. Procedia Engineering, 108, 453–458.10.1016/j.proeng.2015.06.170
  48. Xu, Y., Jiang, L., Xu, J., Li, Y., 2012. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick, Construction and Building Materiasl, 27, 32–38.10.1016/j.conbuildmat.2011.08.030
Language: English
Page range: 326 - 338
Submitted on: Jun 14, 2021
Accepted on: Sep 16, 2021
Published on: Dec 17, 2021
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Alina Pietrzak, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.