Have a personal or library account? Click to login
Possibilities of Improving the Thermal Protection of Residential Buildings by the Application of Over-Rafter Roof Insulation Systems Cover

Possibilities of Improving the Thermal Protection of Residential Buildings by the Application of Over-Rafter Roof Insulation Systems

Open Access
|Dec 2021

References

  1. Berardi U., 2019. The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials, Energy 182, 777-794, DOI: https://doi.org/10.1016/j.energy.2019.06.02210.1016/j.energy.2019.06.022
  2. Brycht N., Respondek Z., 2018. Analiza cech zabudowy mieszkaniowej na terenach wiejskich w regionie częstochowskim, Zeszyty Naukowe Politechniki Częstochowskiej. Budownictwo, 24, 36-41, DOI: 10.17512/znb.2018.1.0610.17512/znb.2018.1.06
  3. Gravit, M., Kuleshin A., Khametgalieva E., Karakozova I., 2017. Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry. IOP Conf. Series: Earth and Environmental Science, 90, 01287, DOI: 10.1088/1755-1315/90/1/01218710.1088/1755-1315/90/1/012187
  4. Ingaldi M., Dziuba, S.T., 2018. Ocena ekoświadomości mieszkańców Jury Krakowsko-Częstochowskiej, Quality Production Improvement, 1(8), 148-159, DOI: 10.30657/qpi.2018.09.1010.30657/qpi.2018.09.10
  5. Investor’s photos, 2020. Photographic documentation from the implementation stage, provided by the investor.
  6. Kanchanapiya, P., Methacanon P., Tantisattayakul T., 2018. Techno-economic analysis of light weight concrete block development from polyisocyanurate foam waste, Resources, Conservation and Recycling 138, 313-325, DOI: https://doi.org/10.1016/j.resconrec.2018.07.02710.1016/j.resconrec.2018.07.027
  7. Kurańska, M., Prociak, A., Kirklups, M., Cabulis, U., 2015. Polyurethane– polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil, Industrial Crops and Products. 74, 849-857, DOI: https://doi.org/10.1016/j.indcrop.2015.06.00610.1016/j.indcrop.2015.06.006
  8. Lenz, J., Pospiech, D. Paven M., Albach, R., Voit, B., 2020. Influence of the catalyst concentration on the chemical structure, the physical properties and the fire behavior of rigid polyisocyanurate foams, Polymer Degradation and Stability, 177, 109168, DOI: https://doi.org/10.1016/j.polymdegradstab.2020.10916810.1016/j.polymdegradstab.2020.109168
  9. Lis A., Lis P., 2018. Ograniczanie zużycia energii do ogrzewania budynków mieszkalnych, Construction of Optimized Energy Potential, 1, 43-50, DOI: https://doi.org/10.17512/bozpe.2018.1.0610.17512/bozpe.2018.1.06
  10. Macaveckas, T., Bliūdžius R., Burlingis, A., 2021. Determination of the impact of environmental temperature on the thermal conductivity of polyisocyanurate (PIR) foam products, Journal of Building Engineering, 41, 102447, DOI: https://doi.org/10.1016/j.jobe.2021.10244710.1016/j.jobe.2021.102447
  11. Modesti, M., Costantini F., dal Lago, E., Piovesan, F., Roso, M., Boaretti C., Lorenzetti, A., 2018. Valuable secondary raw material by chemical recycling of polyisocyanurate foams, Polymer Degradation and Stability, 156, 151-160, DOI: https://doi.org/10.1016/j.polymdegradstab.2018.08.01110.1016/j.polymdegradstab.2018.08.011
  12. Modesti, M., Lorenzetti, A., 2003. Improvement on fire behaviour of water blown PIR–PUR foams: use of an halogen-free flame retardant, European Polymer Journal, vol. 39, iss. 2, 263-268, DOI: https://doi.org/10.1016/S0014-3057(02)00198-210.1016/S0014-3057(02)00198-2
  13. Podwysocka Z., 2013. Budowa domów styropianowych. Dachy i stropy z kształtek styropianowych, Online: https://muratordom.pl/budowa/inne-technologie-budowlane/Budowa-domow-styropianowych-stropy-z-ksztaltek-styropianowych-aa-bzJA-RCR6-3wAW.html
  14. PU Europe, 2011. Durability of polyurethane insulation products, [Online]. Available: https://www.pu-europe.eu/fileadmin/documents/Factsheets_public/Factsheet_16_Durability_of_polyurethane_insulation_products__Rev2011_.pdf
  15. Rosak-Szyrocka, J., Janik, C., 2017. The quality aspect of management in the construction sector, Quality Production Improvement, 1(6), 142-151, DOI: 10.30657/qpi.2017.06.1410.30657/qpi.2017.06.14
  16. Sipur, 2021. Technical information of the Polish Association of Producers and Processors of Polyurethane Insulations PUR i PIR „SIPUR”. https://sipur.pl/
  17. Siwiec, D., Pacana A., 2021. Method of improve the level of product quality, Production Engineering Archives, 21(1), 1-7, DOI: https://doi.org/10.30657/pea.2021.27.110.30657/pea.2021.27.1
  18. Siwiec, D., Pacana A., 2021. Method of improve the level of product quality, Production Engineering Archives, 21(1), 1-7, DOI: https://doi.org/10.30657/pea.2021.27.110.30657/pea.2021.27.1
  19. Szafranko, E., 2020. Methodology for assessment of the cost effectiveness of simple energy efficient investments, Construction of Optimized Energy Potential, 2, 103-111, DOI: https://doi.org/10.17512/bozpe.2020.2.1310.17512/bozpe.2020.2.13
  20. Thermal insulation materials made from rigid polyurethane foam (PUR/PIR): Properties and Manufacture, 2006. Federation of European Rigid Polyurethane Foam Associations. [Online]. Available: http://highperformanceinsulation.eu/wpcontent/uploads/2016/08/Thermal_insulation_materials_made_of_rigid_polyurethane_foam.pdf
Language: English
Page range: 283 - 292
Submitted on: May 16, 2021
Accepted on: Jun 30, 2021
Published on: Dec 17, 2021
Published by: Quality and Production Managers Association
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Zbigniew Respondek, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.