Have a personal or library account? Click to login
Improvement of Manual Assembly Line Based on Value Stream Mapping (VSM) and Efectiveness Coefficient Cover

Improvement of Manual Assembly Line Based on Value Stream Mapping (VSM) and Efectiveness Coefficient

Open Access
|Oct 2019

References

  1. Brzeziński, S., Klimecka-Tatar, D. 2016, Effect of the changes in the forming metal parameters on the value streams flow and the overall equipment effectiveness coefficient, 25th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, pp. 1750-1755.
  2. Favi, C., Germani, M., Marconi, M. 2017, A 4M Approach for a Comprehensive Analysis and Improvement of Manual Assembly Lines. Procedia Manufacturing 11, pp. 1510–1518. DOI: 10.1016/j.promfg.2017.07.283.10.1016/j.promfg.2017.07.283
  3. Godina, R., Pimentel, C., Silva, F.J.G., Matias, J.C.O. 2018, Improvement of the Statistical Process Control Certainty in an Automotive Manufacturing Unit, Procedia Manufacturing 17, pp. 729–736. DOI: 10.1016/j.promfg.2018.10.123.10.1016/j.promfg.2018.10.123
  4. Harari, N.S., Fundin, A., Carlsson, A.L. 2018, Components of the Design Process of Flexible and Reconfigurable Assembly Systems, Procedia Manufacturing 25, pp. 549–556. DOI: 10.1016/j.promfg.2018.06.118.10.1016/j.promfg.2018.06.118
  5. Jagusiak-Kocik, M., 2014. Ensuring continuous improvement processes through standardization in the automotive company. Production Engineering Archives 2/1, pp.12–15. DOI: 10.30657/pea.2014.02.04.10.30657/pea.2014.02.04
  6. Klimecka-Tatar, D. 2018, Context of production engineering in management model of value stream flow according to manufacturing industry, Production Engineering Archives 21, pp. 32-35. DOI: 10.30657/pea.2018.21.0710.30657/pea.2018.21.07
  7. Klimecka-Tatar, D., 2017. Value stream mapping as lean production tool to improve the production process organization – case study in packaging manufacturing. Production Engineering Archives 17, pp. 40–44. DOI: http://dx.doi.org/10.30657/pea.2017.17.09.10.30657/pea.2017.17.09
  8. Krynke, M., Knop, K., Mielczarek, K. 2014, Using Overall Equipment Effectiveness indicator to measure the level of planned production time usage of sewing machine, Production Engineering Archives 5/4, pp. 6-9. DOI: 10.30657/pea.2014.05.0210.30657/pea.2014.05.02
  9. Lee, Dong-Hyeong; Na, Min-Woo; Song, Jae-Bok; Park, Chan-Hun; Park, Dong-Il. 2019, Assembly process monitoring algorithm using force data and deformation data, Robotics and Computer-Integrated Manufacturing 56, pp. 149–156. DOI: 10.1016/j.rcim.2018.09.008.10.1016/j.rcim.2018.09.008
  10. Maszke, A. 2019, TPM Safety Impact – Case Study, CzOTO 2019, 1(1), 639–646. DOI: 10.2478/czoto-2019-008110.2478/czoto-2019-0081
  11. Menn, J.P., Sieckmann, F., Kohl, H., Seliger, G. 2018, Learning process planning for special machinery assembly, Procedia Manufacturing 23, pp. 75–80. DOI:10.1016/j.promfg.2018.03.164.10.1016/j.promfg.2018.03.164
  12. Moreira, B.M.D.N., Gouveia, R.M.,Silva, F.J.G.; Campilho, R.D.S.G. 2017, A Novel Concept of Production and Assembly Processes Integration, Procedia Manufacturing 11, pp. 1385–1395. DOI: 10.1016/j.promfg.2017.07.268.10.1016/j.promfg.2017.07.268
  13. Naebulharam, R., Zhang, L. 2013, Performance Analysis of Serial Production Lines with Deteriorating Product Quality, IFAC Proceedings Volumes 46/9, pp. 501–506. DOI: 10.3182/20130619-3-RU-3018.00105.10.3182/20130619-3-RU-3018.00105
  14. Nuchsara, K. and Nalin, P. 2007, The Assembly Line Balancing Problem: Review articles, KKU Engineering Journal 34/2, pp. 133 – 140.
  15. Renu, R.Sh.; Mocko, G. 2016, Computing similarity of text-based assembly processes for knowledge retrieval and reuse. Journal of Manufacturing Systems 39, pp. 101–110. DOI: 10.1016/j.jmsy.2016.03.004.10.1016/j.jmsy.2016.03.004
  16. Roldán, J.J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., Barrientos, A. 2019, A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining, Robotics and Computer-Integrated Manufacturing 59, pp. 305–316. DOI: 10.1016/j.rcim.2019.05.004.10.1016/j.rcim.2019.05.004
  17. Schmitt, R., Dietrich, F., Dröder, K. 2019, Methodology and experimental analysis of failure connections in precision assembly process data. Procedia CIRP 79, pp. 170–175. DOI: 10.1016/j.procir.2019.02.039.10.1016/j.procir.2019.02.039
  18. Shen, C.-C. 2015, Discussion on key successful factors of TPM in enterprises. Journal of pp. Applied Research and Technology 13/3 pp. 425–427. DOI: 10.1016/j.jart.2015.05.002.10.1016/j.jart.2015.05.002
  19. Shim, M., Kim, J-H. 2018, Design and optimization of a robotic gripper for the FEM assembly process of vehicles, Mechanism and Machine Theory 129, pp. 1–16. DOI: 10.1016/j.mechmachtheory.2018.07.006.10.1016/j.mechmachtheory.2018.07.006
  20. Tracht, K., Funke, L., Schottmayer, M., 2015, Online-control of assembly processes in paced production lines, CIRP Annals 64/1, pp. 395–398. DOI: 10.1016/j.cirp.2015.04.112.10.1016/j.cirp.2015.04.112
Language: English
Page range: 537 - 544
Submitted on: Apr 25, 2019
|
Accepted on: May 21, 2019
|
Published on: Oct 8, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Dorota Klimecka-Tatar, Vishvajit Shinde, published by Quality and Production Managers Association
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.