References
- Brian L. DeCost, Elizabeth A. Holm, 2015. A computer vision approach for automated analysisand classification of microstructural image data, Computational Materials Science, 110, 126-133, DOI: 10.1016/j.commatsci.2015.08.01110.1016/j.commatsci.2015.08.011
- Chowdhury A., Kautz E., Yener B., Lewis D., 2016. Image driven machine learning methods formicrostructure recognition, Computational Materials Science, 123, 176-187, DOI:10.1016/j.commatsci.2016.05.034.10.1016/j.commatsci.2016.05.034
- Geron A., 2018. Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow, Helion SA,Gliwice Poland [in Polish]
- Prasanna P., Dana K. J., Gucunski N., Basily B. B., Hung M. La, Lim R. S., Parvardeh H., 2014. Automated Crack Detection on Concrete Bridges, IEEE Transactions on Automation Science and Engineering, 13, 591-599,DOI: 10.1109/TASE.2014.235431410.1109/TASE.2014.2354314
- Redmon J., Divvala S., Girshick R., Farhadi A., 2015. You Only Look Once. Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788, DOI: 10.1109/CVPR.2016.91.10.1109/CVPR.2016.91
- Shi Y., Cui L., Qi Z., Meng F., Chen Z., 2016. Automatic Road Crack Detection Using Random Structured Forests, IEEE Transactions on Intelligent Transportation Systems, 17, 3434-3445, DOI: 10.1109/TITS.2016.255224810.1109/TITS.2016.2552248
- Wojnar, L., 1999. Image analysis. Applications in materials engineering, CRC Press, Boca Raton, USA.
- Zocca V., Spacagna G., Slater D., Roelants P., 2017. Deep learning. Uczenie głębokie z językiem Python. Sztuczna inteligencja i sieci neuronowe, Helion SA, Gliwice Poland [in Polish]