Have a personal or library account? Click to login

Determination of β-blocking receptor drugs in silica gel TLC systems with the mobile phase containing surfactant

By:
Open Access
|Feb 2023

References

  1. 1. Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterisation through their manipulation to beneficial clinical application. Cardiology. 2012;122(2):104-12.10.1159/00033927122759389
  2. 2. Davies CJ. Chromatography of β-adrenergic blocking agents. J Chromatogr Biome Appl. 1990;531:131-80.10.1016/S0378-4347(00)82283-5
  3. 3. Zejc A, Gorczyca M. Chemia leków. Second edition Warszawa: PZWL; 2002:247-62.
  4. 4. Martinez V, Maguregui MI, Jimenez R M, A lonzo R M. Determination of the pKA values of beta-blockers by automated potentiometric titration. J Pharm Biomed Anal. 2000;23(2/3):459-68.10.1016/S0731-7085(00)00324-110933539
  5. 5. Saleem K, Ali I, Kulsum U, Aboul-Enein HY. Recent developments in HPLC analysis of β-blockers in biological Samples. J Chromatogr Sci. 2013;51:807-18.10.1093/chromsci/bmt03023619556
  6. 6. Cheng J-Q, Liu T, Nie X-M, Chen F-M, Wang C-S, Zhang F. Analysis of 27 β-blockers and metabolites in milk powder by High Performance Liquid Chromatography coupled to Quadrupole Orbitrap High-Resolution Mass Spectrometry. Molecules. 2019;24:820-42;10.3390/molecules24040820641219130823583
  7. 7. Silva Gracia M, Köppl A, Unholzer S, Haen E. Development and validation of an HPLC-UV method for the simultaneous determination of the antipsychotic’s clozapine, olanzapine and quetiapine, several beta-blockers and their metabolites. Biomed Chromatogr. 2017;31:e3968.10.1002/bmc.396828266722
  8. 8. Gumieniczek A, Berecka A. Thin layer chromatography in drug analysis. Boca Raton: CRC Press; 2013:527-48.
  9. 9. Ogrodowczyk M, Marciniec B. Comparative analysis of selected β-blockers. Acta Pol Pharm Drug Res. 2013;70:779-86.
  10. 10. Krzek J, Kwiecień A. Application of densitometry for determination of beta-adrenergic-blocking agents in pharmaceutical preparations. J Planar Chromatogr. 2005;18:308-13.10.1556/JPC.18.2005.4.11
  11. 11. Gallegos A, Peavy T, Dixon R, Isseroff RR. Development of a novel ion-pairing UPLC method with cation-exchange solid-phase extraction for determination of free timolol in human plasma. J Chromatogr B. 2018;1086:228-35.10.1016/j.jchromb.2018.08.01630189376
  12. 12. Ruiz-Angel MJ, Carda-Broch S, Garcia-Alvarez-Coque MC. High submicellar liquid chromatography. Sep Purif Rev. 2014;43:124-54.10.1080/15422119.2012.743917
  13. 13. Peris-García E, Ruiz-Angela MJ, Carda-Broch S, García-Alvarez-Coque MC. Analysis of basic drugs by liquid chromatography with environmentally friendly mobile phases in pharmaceutical formulations. Microchem J. 2017;134:202-10.10.1016/j.microc.2017.06.009
  14. 14. Ruiz-Angela MJ, Pous-Torres S, Carda-Broch S, García-Alvarez-Coque MC. Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases. J Chromatogr A. 2014;1344:76-82.10.1016/j.chroma.2014.04.01124767835
  15. 15. Rodenas-Montano J, Ortiz-Bolsico C, Ruiz-Angel MJ, García-Alvarez-Coque MC. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab®: Separation of basic compounds in urine samples. J Chromatogr A. 2014;1344:31-41.10.1016/j.chroma.2014.03.07324767834
  16. 16. Peris-Garcia E, Ortiz-Bolsico C, Baeza-Baeza JJ, Garcia-Alvarez Coque MC. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. J Sep Sci. 2015;38:2059-67.10.1002/jssc.20150014225866292
  17. 17. Sumina EG, Shtykov SN, Tyurina SV. Surfactants in thin-layer chromatography. J Anal Chem. 2003;58:720-30.10.1023/A:1025027409149
  18. 18. Subuddhi U, Mishra AK. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf B Biointerfaces. 2007;57:102-7.10.1016/j.colsurfb.2007.01.00917336505
  19. 19. Nurunnabi M, Zehedina K, Revuri V, Nafiujjaman M, Cha S, Cho S, Huh KM, et al. Design and strategies for bile acid mediated therapy and imaging. RSC Adv. 2016;6:73986-4002.10.1039/C6RA10978K
  20. 20. [www.sigmaaldrich.com/deepweb/asseste/sigmaaldrich/product/documents/256/387/detergent-selection-guide.pdf]
  21. 21. Madenci D, Egelhaaf SU. Self-assembly in aqueous bile salt solutions. Curr Opin Colloid Interface Sci. 2010;15:109-15.10.1016/j.cocis.2009.11.010
  22. 22. Matsuoka K, Suzuki M, Honda C, Endo K, Moroi Y. Micellization of conjugated chenodeoxy- and ursodeoxycholates and ssolubilisation of cholesterol into their micelles: comparison with other four conjugated bile salt species. Chem Phys Lipids. 2006;139:1-10.10.1016/j.chemphyslip.2005.08.00616256096
  23. 23. Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part I). Biochim Biophys Acta. 2002;1580:189-99.10.1016/S1388-1981(01)00203-7
  24. 24. Maslova VA, Kiselev MA. Structure of sodium cholate micelles. Crystall Rep. 2018;63:472-5.10.1134/S1063774518030173
DOI: https://doi.org/10.2478/cipms-2022-0037 | Journal eISSN: 2300-6676 | Journal ISSN: 2084-980X
Language: English
Page range: 212 - 218
Submitted on: Jul 29, 2022
Accepted on: Dec 19, 2022
Published on: Feb 9, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Adam Traczuk, Beata Polak, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.