References
- Almahfouz, A. Kassem, N. & Moukalled, F. (2021). A Comparative Analysis of Econometric, Machine Learning and Deep Learning Models for Financial Time Series Forecasting. International Journal of Forecasting, 37(4), 1021–1035.
https://doi.org/10.62951/ijamc.v1i2.71 . - Aly, M., & Zhang, Y. (2024). Efficient Sequence Modeling in Cryptocurrency Forecasting Using GRU Networks. Journal of Financial Data Science, 6(1), 45–62.
- Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Muneer, A., Sumiea, E. H., Alqushaibi, A., & Ragab, M. G. (2024). RNN-LSTM: From Applications to Modeling Techniques and Beyond Systematic Review. Journal of King Saud University-Computer and Information Sciences, 12(5), 102068.
https://doi.org/10.1016/j.jksuci.2024.102068 . - Badar, M. I., et al. (2025). Enhanced Interpretable Forecasting of Cryptocurrency Prices Using Autoencoder Features and a Hybrid CNN–LSTM Model. Mathematics, 13(4), 678.
https://doi.org/10.3390/math13121908 . - Bao, W., Yue, J., & Rao, Y. (2017). A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long Short-Term Memory. PLOS ONE, 12(7): e0180944.
https://doi.org/10.1371/journal.pone.0180944 . - Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
https://doi.org/10.1016/0304-4076(86)90063-1 . - Box, G.E.P., Jenkins, G.M., Reinsel, G.C., & Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley Series in Probability and Statistics. John Wiley & Sons, 65(4), 120–124.
https://doi.org/10.1111/jtsa.12194 . - Cheung, Y. W., & Lai, K. S. (1995). A Search for Long Memories in International Stock Market Returns. Journal of International Money and Finance, 14(4), 597615.
https://doi.org/10.1016/0261-5606(95)93616-U . - Chlebus, M., Dyczko, M., & Wozniak, M. (2021). Nvidia’s Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problems. Central European Economic Journal, 8(55).
https://doi.org/10.2478/ceej-2021-0004 . - Choi, W., Jang, S., Kim, S., Park, C., Park, S., & Song, S. (2024). Return Prediction by Machine Learning for the Korean Stock Market. Journal of the Korean Statistical Society, 53(1), 248–280.
https://doi.org/10.1007/s42952-023-00245-0 . - Choi, J. E., Shin, J. W., & Shin, D. W. (2025). Vector SHAP Values for Machine Learning Time Series Forecasting. Journal of Forecasting, Wiley, 44(3), 564–582.
https://doi.org/10.1002/for.3220 . - Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Computer Science > Neural and Evolutionary Computing. 45(6), 23–25.
https://doi.org/10.48550/arXiv.1412.3555 . - Cocco, L., Tonelli, R., & Marchesi, M. (2021). Predictions of Bitcoin Prices Through Machine Learning Based Frameworks. PeerJ Computer Science, 12(7), 413.
https://doi.org/10.7717/peerj-cs.413 . - Cont, R. (2001). Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues. Quantitative Finance, 1(2), 223–236.
https://doi.org/10.1080/713665670 . - De Gooijer, J. G., & Hyndman, R. J. (2006). 25 Years of Time Series Forecasting. International Journal of Forecasting, 22(3), 443–473.
https://doi.org/10.1016/j.ijforecast.2006.01.001 . - Stempień, D., & Ślepaczuk, R. (2025). Hybrid Models for Financial Forecasting: Combining Econometric, Machine Learning, and Deep Learning Models. ARXIV, 2(4), 22–26.
https://doi.org/10.48550/arXiv.2505.19617 . - Engle, R. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Economic Perspectives, 15(4), 157–168.
https://doi.org/10.1257/jep.15.4.157 . - Fischer, T., & Krauss, C. (2018). Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions. European Journal of Operational Research, 270(2), 654–669.
https://doi.org/10.1016/j.ejor.2017.11.054 . - Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10), 2451–2471.
https://doi.org/10.1162/089976600300015015 . - Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, 3(08), 115–143.
- Idrees, M., Hussain Sial, M., & Ul Hassan, N. (2025). Forecasting Stock Prices Using LSTM with Attention. PLOS ONE, 20(1).
https://doi.org/10.1371/journal.pone.e0271245 . - He, K., Yang, Q., Ji, L., Pan, J., & Zou, Y. (2023). Financial Time Series Forecasting with the Deep Learning Ensemble Model (Mathematics). Multidisciplinary Digital Publishing Institute. 11(4), 1054.
https://doi.org/10.3390/math11041054 . - Jing, N., Wu, Z., & Wang, H. (2021). A Hybrid Model Integrating Deep Learning with Investor Sentiment Analysis for Stock Price Prediction. Expert Systems with Applications, 178, 115019.
https://doi.org/10.1016/j.eswa.2021.115019 . - Kehinde, T., Khan, W. A., & Chung, S. H. (2023). Financial Market Forecasting using RNN, LSTM, BiLSTM, GRU and Transformer-Based Deep Learning Algorithms.
- Kobiela, D., Krefta, D., Król, W., & Weichbroth, P. (2022). ARIMA vs LSTM on NASDAQ Stock Exchange Data. Procedia Computer Science, 207(7), 3836–3845.
https://doi.org/10.1016/j.procs.2022.09.445 . - Lundberg, S. M., & Lee, S. I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30(6), 4765–4774.
https://doi.org/10.48550/arXiv.1705.07874 . - Shen, S., Jiang, H., & Zhang, T. (2012). Stock Market Forecasting Using Machine Learning Algorithms. American Journal of Trade and Policy, 4(3),1–5.
https://doi.org/10.18034/ajtp.v4i3.521 . - Shi, Z., Hu, Y., Mo, G., & Wu, J. (2022). Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction(arXiv:2204.02623). arXiv.
https://doi.org/10.48550/ARXIV.2204.02623 - Sima, Namini., & A, Namin. (2018). Forecasting Economics and Financial Time Series: ARIMA vs. LSTM. 122(10).
https://doi.org/10.48550/arXiv.1803.06386 . - Liu, J., Liu, Y., Ren, L., Li, X., & Wang, S. (2025). Trends and Trajectories: A Bibliometric Analysis of Financial Risk (2015–2024). International Journal of Financial Studies, 13(3), 132.
https://doi.org/10.3390/ijfs13030132 - Song, Z., Tsang, H. S.-H., Hsung, R. T.-C., Zhu, Y., & Lo, W.-L. (2025). Volatility and Value-at-Risk Forecasting Using BERT and Transformer Models Incorporating Investors‘ Textual Sentiments. Finance Research Letters, 85, 108210.
https://doi.org/10.1016/j.frl.2025.108210 . - Sun, W., & Li, X. (2025). Intraday and Post-Market Investor Sentiment for Stock Price Prediction: A Deep Learning Framework with Explainability and Quantitative Trading Strategy. Systems, 13(5), 390.
https://doi.org/10.3390/systems13050390 . - Tao, Z., Wu, W., & Wang, J. (2024). Series Decomposition Transformer with Period-Correlation for Stock Market Index Prediction. Expert Systems with Applications, 237, 121424.
https://doi.org/10.1016/j.eswa.2023.121424 - Taylor, S.J. (2008). Modelling Financial Time Series (2nd ed). Cambridge University Press. ISBN: 978-9812770844.
- Yang, C., Zhai, J., & Tao, G. (2020). Deep Learning for Price Movement Prediction Using Convolutional Neural Networks and Long Short-Term Memory. Mathematical Problems in Engineering, 2020(1).
https://doi.org/10.1155/2020/2746845 . - Yang, A. (2025). Big Data-Driven Corporate Financial Forecasting and Decision Support: A Study of CNN-LSTM Machine Learning Models. Frontiers in Applied Mathematics and Statistics. 155(9), 24–28.
https://doi.org/10.3389/fams.2025.1566078 . - Zhang, G. P. (2003). Time Series Forecasting Using A Hybrid ARIMA and Neural Network Model. Neurocomputing, 50(4), 159–175.
https://doi.org/10.1016/S0925-2312(01)00702-0 .
