Have a personal or library account? Click to login
Comparative Analysis of Hedonic Wage and Discrete Choice Models in Valuing Job Safety Cover

Comparative Analysis of Hedonic Wage and Discrete Choice Models in Valuing Job Safety

By:
Open Access
|Jan 2025

Figures & Tables

MWTP for risk reduction (safety) by the magnitude of 1/1000,000 (unit: USD)

MWTP
Meanl1u1
MLModel 1188515372233
Model 2215217982506
PMLModel 3302227393305
Model 4296326723253
HWMFE251336

Wage Regression by Industry (2016)

ManufactoryConstructionCateringTransportationFinanceScienceService
female−0.272*** (0.0232)−0.198** (0.0785)−0.201*** (0.0337)−0.242*** (0.0798)−0.0981 (0.0703)−0.161*** (0.0575)−0.179*** (0.0575)
eduyear0.100*** (0.0059)0.0347** (0.0169)0.0769*** (0.0101)0.0495** (0.0216)0.113*** (0.0193)0.0915*** (0.0140)0.0501*** (0.0130)
lnwexp0.0990*** (0.0212)0.119* (0.0633)0.0923** (0.0439)0.0393 (0.0621)0.193** (0.0838)0.150*** (0.0423)0.0162 (0.0430)
healthlevel0.00211 (0.0144)0.0684* (0.0395)0.0174 (0.0204)0.0403 (0.0420)−0.0068 (0.0445)−0.0373 (0.0448)0.0357 (0.0279)
age0.0088*** (0.0028)0.0008 (0.0054)0.0058 (0.0046)0.0163* (0.0089)0.0132* (0.0078)0.0001 (0.0050)0.0150** (0.006)
_cons4.27*** (0.120)5.21*** (0.368)4.60*** (0.188)4.82*** (0.532)3.94*** (0.391)4.66*** (0.326)4.83*** (0.252)
N1008129495117194167459
R20.3900.1220.2060.1860.2830.3010.117

Summary Statistics of Job Attributes and Worker Attributes by Industry

VariablesDefinitionManufacture Obs. 2,257Construction Obs. 315Catering Obs. 1,055Transportation Obs. 263Finance Obs. 418Science Obs. 413Service Obs. 1,204
wage_altyearly wage income, unit: 1000 TWD in 2014 values500.53 (264.22)545.57 (154.25)454.33 (147.79)519.98 (167.09)607.97 (228.02)492.48 (175.29)517.53 (204.61)
risk_altindustry mortality rates, unit: 1/1,000,00023.70 (0.00)114.50 (8.57)11.32 (1.65)48.47 (0.20)4.03 (1.32)25.17 (3.64)8.75 (2.66)
workhour_ altindustry average monthly total work hours, unit: hour175.74 (0.30)166.13 (0.15)162.34 (1.54)172.74 (0.30)167.05 (1.09)172.26 (0.30)161.10 (1.49)
umem_altindustry unemployment rates, unit: %2.84 (0.02)4.58 (0.00)3.53 (0.09)3.19 (0.00)2.83 (0.32)4.31 (0.20)2.69 (0.14)

Wage Regression by Industry (2018)

ManufactoryConstructionCateringTransportationFinanceScienceService
female−0.243*** (0.0282)−0.175** (0.0828)−0.240*** (0.0399)−0.211** (0.0985)−0.102 (0.0740)−0.105* (0.0548)−0.231*** (0.0535)
eduyear0.110*** (0.0066)0.0622*** (0.0155)0.0788*** (0.0110)0.0730*** (0.0271)0.096*** (0.0197)0.110*** (0.0152)0.0611*** (0.0115)
lnwexp0.0804** (0.0335)0.256*** (0.0704)0.211*** (0.0567)0.313*** (0.101)0.178** (0.0885)0.189*** (0.0573)−0.007 (0.0503)
healthlevel0.0183 (0.0155)0.00363 (0.0405)0.0606** (0.0278)0.159*** (0.0564)0.0279 (0.0408)0.0310 (0.0413)0.0277 (0.0255)
age0.0117*** (0.0031)−0.0049 (0.0058)−0.0017 (0.006)−0.0134 (0.0092)0.0099 (0.0079)0.0012 (0.0041)0.0098 (0.0062)
_cons4.07*** (0.140)4.96*** (0.291)4.40*** (0.246)4.53*** (0.621)4.19*** (0.425)4.03*** (0.363)4.95*** (0.254)
N93712539496177158395
R20.3630.1880.2480.2150.1730.3710.142

Regression Results-Discrete Choice Model

CLMLPML
Model 1Model 2Model 3Model 4Model 5Model 6
wage_alt0.0017***0.0013***0.0022***0.0018***0.0018***0.0016***
risk_alt–0.1091***–0.0986***–0.1244***–0.1162***–0.1632***–0.1422***
workhour_alt0.0251**0.00960.1633***0.1039***0.1529***0.1085***
unem_alt−0.7097***−0.5777***0.34340.1138−0.1729−0.2892
sd(risk_alt) 0.3826***0.3186***0.2546***0.2323***
sd(workhour_alt) 0.4681***0.4270***0.4601***0.4771***
sd(umem_alt) 0.00260.00412.3677***2.7743***
Construction
eduyear −0.2003*** −1.0500** −1.0161***
age −0.0134 0.0941 0.1238**
female −1.0217*** −15.3042*** −11.4380***
_cons9.0968***11.2592***−42.8469***−19.2340−19.0045***−5.0814
Catering
eduyear −0.1084*** −0.1538* −0.1549**
age −0.0296*** −0.0946*** −0.0997***
female 0.6325*** 3.2816*** 3.2010***
_cons−2.0309***0.7968−1.3451***2.2099−1.3025***2.5388*
Transportation
eduyear −0.0522 −0.1804 −0.1984***
age −0.0162 −0.0123 0.0004
female −0.3839* −3.2871*** −2.4575***
_cons−2.98761.8339**−8.5789***−2.9876−5.4116***0.1871
Finance
eduyear 0.2072*** 0.2016** 0.2588***
age 0.0058 −0.0370 −0.0454**
female 0.6392*** 3.1610*** 2.9912***
_cons−3.7770***−7.1861***−8.5789***−9.0142*** −8.6711***
Science
eduyear 0.0321 0.0385 0.0385
age 0.0105 −0.0011 0.0315
female 0.4214*** 0.6866*** 1.1440***
_cons−0.6070***−1.8486***−1.9667***−2.4552***−2.9669***−5.4924***
Service
eduyear 0.1624*** 0.1287 0.2505***
age −0.0345*** −0.1047*** −0.1237***
female 1.1372*** 3.9960*** 4.1265***
_cons−2.2029***−4.0223***−2.1834***−2.8356−2.4155***−4.1438**
N32,34732,34732,34732,34732,34732,347
Pseudo R21.41%1.32%30.93%31.52%27.36%28.19%
Log-likelihood−7388.89−7085.43−7127.41−6923.56−6107.19−5918.74
AIC14797.7814226.8714280.8113909.1112750.2511899.47

Variable Descriptive Statistics

CategoryVariableDefinitionMeanMinMax
Individual (Obs. 4035)wageYearly wage in 2014 value (unit: 1000 TWD)537. 228.55587.7
eduyearEducation years14.10.022.0
feduyearFather’s education years9.20.022.0
female1 if female, 0 otherwise0.40.01.0
ageage35.125.079.0
marriage1 if married, 0 otherwise0.50.01.0
scaleNumber of employees in the firm212.22.0500.0
wexpWorking experience years13.61.071.0
healthlevel1 for very good health, 5 for very bad health3.61.05.0
Industry (seven industries)riskindustry mortality rates, unit: 1/1,000,00023.60.0124.3
workhour_altindustry average monthly total work hours, unit: hour169.8159.8176.0
unem_altindustry unemployment rates, unit: %3.22.64.6
Town (218 towns)TJANtownship-level average January temperature (Celsius) from 1981 to 200516.413.120.8
TJULtownship-level average July temperature (Celsius) from 1981 to 200528.826.430.3
Regional dummyNORTH1 if respondent lives in Northern Taiwan, 0 otherwise0.50.01.0
CENTER1 if respondent lives in central Taiwan, 0 otherwise0.20.01.0
SOUTH1 if respondent lives in southern Taiwan, 0 otherwise0.20.01.0
EAST1 if respondent lives in eastern Taiwan, 0 otherwise0.00.01.0

The Hedonic Wage Model Results

(1)(2)(3)(4)(5)
year2016year2018pool_1pool_2FE
risk_alt0.0006* (0.0003)0.0011*** (0.0004)0.0008*** (0.0002)0.0012*** (0.0003)0.0012*** (0.0003)
eduyear0.0660*** (0.0052)0.0765*** (0.0054)0.0710*** (0.0038)0.0711*** (0.0038)0.0706*** (0.0038)
feduyear0.0095*** (0.0029)0.0063** (0.0030)0.0082*** (0.0021)0.0079*** (0.0021)0.0078*** (0.0021)
female−0.2149*** (0.0166)−0.2370*** (0.0190)−0.2248*** (0.0125)−0.2301*** (0.0128)−0.2299*** (0.0128)
age0.0158*** (0.0039)0.0113*** (0.0035)0.0142*** (0.0026)0.0141*** (0.0026)0.0138*** (0.0026)
wexp−0.0017 (0.0034)0.0011 (0.0031)−0.0005 (0.0023)−0.0003 (0.0023)−0.0003 (0.0023)
marry0.1471*** (0.0170)0.1156*** (0.0198)0.1351*** (0.0130)0.1349*** (0.0129)0.1346*** (0.0129)
scale0.0004*** (0.0000)0.0004*** (0.0000)0.0004*** (0.0000)0.0005*** (0.0000)0.0005*** (0.0000)
TJAN−0.0503*** (0.0066)−0.0519*** (0.0078)−0.0502*** (0.0050)−0.0503*** (0.0050)−0.0507*** (0.0050)
TJUL0.0874*** (0.0159)0.1035*** (0.0166)0.0933*** (0.0115)0.0899*** (0.0115)0.0907*** (0.0115)
workhour_alt −0.0045*** (0.0011)−0.0042*** (0.0011)
unem_alt −0.0238* (0.0137)−0.0170 (0.0137)
year 0.0158** (0.0061)
_cons2.7904*** (0.4185)2.3943*** (0.4370)2.6150*** (0.3026)3.5419*** (0.3666)−28.3320** (12.4421)
N22931742403540354035
R20.3490.3610.3570.3590.360
DOI: https://doi.org/10.2478/ceej-2025-0001 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 1 - 16
Published on: Jan 7, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2025 Nan Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 License.