Have a personal or library account? Click to login
Is Bitcoin an emerging market? A market efficiency perspective Cover

Is Bitcoin an emerging market? A market efficiency perspective

By: Mateusz SkwarekORCID  
Open Access
|Sep 2023

References

  1. Aggarwal, D. (2019). Do Bitcoins follow a random walk model? Research in Economics, 73, 15–22. https://doi.org/10.1016/j.rie.2019.01.002
  2. Alvarez-Ramirez, J., Rodriguez, E., & Ibarra-Valdez, C. (2018). Long-range correlations and asymmetry in the Bitcoin market. Physica A: Statistical Mechanics and Its Applications, 492, 948–955. https://doi.org/10.1016/j.physa.2017.11.025
  3. Al-Yahyaee, K. H., Mensi, W., & Yoon, S. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
  4. Aslan, A., & Sensoy, A. (2020). Intraday efficiency-frequency nexus in the cryptocurrency markets. Finance Research Letters, 35(C). https://doi.org/10.1016/j.frl.2019.09.013
  5. Assaf, A., Bhandari, A., Charif, H., & Demir, E. (2022). Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19. International Review of Financial Analysis, 82(C). https://doi.org/10.1016/j.irfa.2022.102132
  6. Bariviera, A. F. (2017). The inefficiency of Bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4. https://doi.org/10.1016/j.econlet.2017.09.013
  7. Bariviera, A. F., Basgall, M. J., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications, 484(C), 82–90. https://doi.org/10.1016/j.physa.2017.04.159
  8. Baur, D., & McDermott, T. (2010). Is gold a safe haven? International evidence. Journal of Banking & Finance, 34(8), 1886–1898. https://doi.org/10.1016/j.jbankfin.2009.12.008
  9. Borowski, K., & Matusewicz, M. (2019). The day-of-the-week effect on the example of 82 cryptocurrencies. Przedsiębiorstwo i Finanse, 3(26), 31–50. Retrieved from http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.ojs-issn-2084-1361-year-2019-issue-3-article-df281222-63ea-385f-a265-72dc5dc83783
  10. Borowski, K., & Matusewicz, M. (2020). Calculating Hurst Exponent with the Use of the Siroky Method in Developed and Emerging Markets. Finanse I Prawo Finansowe, 3(27), 25–61. https://doi.org/10.18778/2391-6478.3.27.02
  11. Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20(C), 192–198. https://doi.org/10.1016/j.frl.2016.09.025
  12. Bouri, E., Gil-Alana, L. A., Gupta, R., & Roubaud, D. (2019). Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics, 24, 412–26. https://doi.org/10.1002/ijfe.1670
  13. Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. https://doi.org/10.1016/j.qref.2020.03.004
  14. Brauneis, A., & Mestel, R. (2018). Price discovery of cryptocurrencies: Bitcoin and beyond. Economics Letters, 165, 58–61. https://doi.org/10.1016/j.econlet.2018.02.001
  15. Cajueiro, D., & Tabak, B. (2004). The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient. Physica A: Statistical Mechanics and its Applications, 336(3), 521–537. https://doi.org/10.1016/j.physa.2003.12.031
  16. Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency market. Research in International Business and Finance, 46(C), 141–148. https://doi.org/10.1016/j.ribaf.2018.01.002
  17. Carrick, J. (2016). Bitcoin as a Complement to Emerging Market Currencies. Emerging Markets Finance and Trade, 52(10), 2321–2334. https://doi.org/10.1080/1540496X.2016.1193002
  18. Chowdhury, M. A. F., Abdullah, M., Alam, M., Abedin, M. Z., & Shi, B. (2023). NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis. International Review of Financial Analysis, 87(C). https://doi.org/10.1016/j.irfa.2023.102642
  19. Czarnecki, Ł., Grech, D., & Pamuła, G. (2008). Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market. Physica A-statistical Mechanics and Its Applications, 387, 6801–6811. https://doi.org/10.1016/j.physa.2008.08.019
  20. Czekaj, J., Woś, M., & Żarnowski, J. (2001). Efektywność giełdowego rynku akcji w Polsce. Z perspektywy dziesięciolecia. Warszawa: Wydawnictwo Naukowe PWN
  21. Diniz-Maganini, N., Diniz, E. H., & Rasheed, A. A. (2021). Bitcoin's price efficiency and safe haven properties during the COVID-19 pandemic: A comparison. Research in International Business and Finance, 58, 101472. https://doi.org/10.1016/j.ribaf.2021.101472
  22. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486
  23. Fernandes, L. H. S., Bouri, E., Silva, J. W.L., Bejan L., & de Araujo, F. H. A. (2022). The resilience of cryptocurrency market efficiency to COVID-19 shock. Physica A: Statistical Mechanics and its Applications, 607. https://doi.org/10.1016/j.physa.2022.128218
  24. Hileman, G., & Rauchs, M. (2017). Global cryptocurrency benchmarking study. Cambridge Centre for Alternative Finance. Retrieved from https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/2017-04-20-global-cryptocurrency-benchmarking-study.pdf
  25. Hkiri, B., Bejaoui, A., Gharib, C., & Al Nemer H. A. (2021). Revisiting efficiency in MENA stock markets during political shocks: evidence from a multi-step approach. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e08028
  26. Hull, M., & McGroarty, F. (2014). Do emerging markets become more efficient as they develop? Long memory persistence in equity indices. Emerging Markets Review, 18(C), 45–61. https://doi.org/10.1016/j.ememar.2013.11.001
  27. Jiang, Y., Nie, H., & Ruan, W. (2018). Time-Varying Long-Term Memory in Bitcoin Market. Finance Research Letters, 25, 280–284. https://doi.org/10.1016/j.frl.2017.12.009
  28. Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185
  29. Khuntia, S., & Pattanayak, J. (2018). Adaptive market hypothesis and evolving predictability of Bitcoin. Economics Letters, 167, 26–28. https://doi.org/10.1016/j.econlet.2018.03.005
  30. Khuntia, S., & Pattanayak, J. (2020). Adaptive Long Memory in Volatility of Intra-day Bitcoin Returns and the Impact of Trading Volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025
  31. Kosc, K., Sakowski, P., & Ślepaczuk, R. (2019). Momentum and contrarian effects on the cryptocurrency market. Physica A: Statistical Mechanics and its Applications, 523, 691–701. https://doi.org/10.1016/j.physa.2019.02.057
  32. Kristoufek, L. (2010). Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals. Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, 4(3), 315–329. Retrieved from https://www.researchgate.net/profile/LadislavKristoufek/publication/227360892_Rescaled_Range_Analysis_and_Detrended_Fluctuation_Analysis_Finite_Sample_Properties_and_Confidence_Intervals/links/0fcfd50ddb6e3bdcf5000000/Rescaled-Range-Analysis-and-Detrended-Fluctuation-Analysis-Finite-Sample-Properties-and-Confidence-Intervals.pdf
  33. Kristoufek, L. (2018). On the Bitcoin market inefficiency and its Evolution. Physica A: Statistical Mechanics and its Applications, 503, 257–262. https://doi.org/10.1016/j.physa.2018.02.161
  34. Kumar, D., & Zargar, F. N. (2019). Informational inefficiency of Bitcoin: A study based on high-frequency data. Research in International Business and Finance, 47, 344–353. https://doi.org/10.1016/j.ribaf.2018.08.008
  35. Köchling, G., Müller, J., & Posch, P. N. (2019). Price delay and market frictions in cryptocurrency markets. Economics Letters, 174(C), 39–41. https://doi.org/10.1016/j.econlet.2018.10.025
  36. Lim, K. P., Brooks, R. D., & Kim, J. H. (2008). Financial crisis and stock market efficiency: Empirical evidence from Asian countries. International Review of Financial Analysis, 17(3), 571–591. https://doi.org/10.1016/j.irfa.2007.03.001
  37. Lo, A. W. (2004). The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. The Journal of Portfolio Management, 30(5), 15–29. Retrieved from https://www.researchgate.net/publication/228183756_The_Adaptive_Markets_Hypothesis_Market_Efficiency_from_an_Evolutionary_Perspective
  38. Mensi, W., Sensoy, A., Vo, X. V., & Kang, S. H. (2022). Pricing efficiency and asymmetric multifractality of major asset classes before and during COVID-19 crisis. The North American Journal of Economics and Finance, 62(C). https://doi.org/10.1016/j.najef.2022.101773
  39. Mizerka, J., Stróżyńska-Szajek, A., & Mizerka, P. (2020). The role of Bitcoin on developed and emerging markets—on the basis of a Bitcoin users graph analysis. Finance Research Letters, 35. https://doi.org/10.1016/j.frl.2020.101489
  40. Mnif, E., Mouakhar, K., & Jarboui, A. (2023). Energy-conserving cryptocurrency response during the COVID-19 pandemic and amid the Russia–Ukraine conflict. Journal of Risk Finance, 24(2), 169–185. https://doi.org/10.1108/JRF-06-2022-0161
  41. Noda, A. (2021). On the evolution of cryptocurrency market efficiency. Applied Economics Letters, 28(6), 433–439. https://doi.org/10.1080/13504851.2020.1758617
  42. Phiri, A. (2022). Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin? Eurasian Economic Review. Eurasia Business and Economics Society, 12(3), 373–386. https://doi.org/10.1007/s40822-022-00214-8
  43. Plastun, A., Kozmenko, S., Plastun V., & Filatova, H. (2019). Market anomalies and data persistence: The case of the day-of-the-week effect. Journal of International Studies, 12(3), 122–130. https://doi.org/10.14254/2071-8330.2019/12-3/10
  44. Polanco-Martínez, J. M. (2019). Dynamic relationship analysis between NAFTA stock markets using nonlinear, nonparametric, non-stationary methods. Nonlinear Dynamics, 97, 369–389. https://doi.org/10.1007/s11071-019-04974-y
  45. Polasik, M., Piotrowska, A. I., Wisniewski, T. P., Kotkowski, R., & Lightfoot, G. (2015). Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry. International Journal of Electronic Commerce, 20(1), 9–49. https://doi.org/10.1080/10864415.2016.1061413
  46. Rufino, C. C. (2023). On the Volatility and Market Inefficiency of Bitcoin During the COVID-19 Pandemic. DLSU Business & Economics Review, 32(2), 23–32. Retrieved from https://www.dlsu.edu.ph/wp-content/uploads/2023/04/2rufino-040323.pdf
  47. Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322–330. https://doi.org/10.1016/j.irfa.2019.01.002
  48. Statista. (2022, January 12). Bitcoin mining by country. Retrieved from https://www.statista.com/statistics/1200477/bitcoin-mining-by-country/
  49. Sukpitak, J., & Hengpunya, V. (2016). Efficiency of Thai stock markets: Detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 458(C), 204–209. https://doi.org/10.1016/j.physa.2016.03.076
  50. Takaishi, T., & Adachi, T. (2020). Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study. Asia-Pacific Financial Markets, 27, 145–154. https://doi.org/10.1007/s10690-019-09286-0
  51. Tovanich, N., Soulié, N., & Isenberg, P. (2021, April). Visual analytics of bitcoin mining pool evolution: on the road toward stability? 3rd International Workshop on Blockchains and Smart Contracts held in conjunction with the 11th IFIP International Conference on New Technologies, Mobility and Security, France, Paris, 1–5. https://doi.org/10.1109/NTMS49979.2021.9432675
  52. Tran, V. L., & Leirvik, T. (2020). Efficiency in the markets of crypto-currencies. Finance Research Letters, 35. https://doi.org/10.1016/j.frl.2019.101382
  53. Urquhart, A. (2016). The inefficiency of Bitcoin. Economics Letters, 148, 80–82. https://doi.org/10.1016/j.econlet.2016.09.019
  54. Wang, J., & Wang, X. (2021). COVID-19 and financial market efficiency: Evidence from an entropy-based analysis. Finance Research Letters, 42(C). https://doi.org/10.1016/j.frl.2020.101888
  55. Wei, W. C. (2018). Liquidity and market efficiency in cryptocurrencies. Economics Letters, 168, 21–24. https://doi.org/10.1016/j.econlet.2018.04.003
DOI: https://doi.org/10.2478/ceej-2023-0013 | Journal eISSN: 2543-6821 | Journal ISSN: 2544-9001
Language: English
Page range: 219 - 236
Published on: Sep 4, 2023
Published by: Faculty of Economic Sciences, University of Warsaw
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Mateusz Skwarek, published by Faculty of Economic Sciences, University of Warsaw
This work is licensed under the Creative Commons Attribution 4.0 License.