Alvarez-Ramirez, J., Rodriguez, E., & Ibarra-Valdez, C. (2018). Long-range correlations and asymmetry in the Bitcoin market. Physica A: Statistical Mechanics and Its Applications, 492, 948–955. https://doi.org/10.1016/j.physa.2017.11.025
Al-Yahyaee, K. H., Mensi, W., & Yoon, S. (2018). Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets. Finance Research Letters, 27, 228–234. https://doi.org/10.1016/j.frl.2018.03.017
Aslan, A., & Sensoy, A. (2020). Intraday efficiency-frequency nexus in the cryptocurrency markets. Finance Research Letters, 35(C). https://doi.org/10.1016/j.frl.2019.09.013
Assaf, A., Bhandari, A., Charif, H., & Demir, E. (2022). Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19. International Review of Financial Analysis, 82(C). https://doi.org/10.1016/j.irfa.2022.102132
Bariviera, A. F., Basgall, M. J., Hasperué, W., & Naiouf, M. (2017). Some stylized facts of the Bitcoin market. Physica A: Statistical Mechanics and its Applications, 484(C), 82–90. https://doi.org/10.1016/j.physa.2017.04.159
Borowski, K., & Matusewicz, M. (2019). The day-of-the-week effect on the example of 82 cryptocurrencies. Przedsiębiorstwo i Finanse, 3(26), 31–50. Retrieved from http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.ojs-issn-2084-1361-year-2019-issue-3-article-df281222-63ea-385f-a265-72dc5dc83783
Borowski, K., & Matusewicz, M. (2020). Calculating Hurst Exponent with the Use of the Siroky Method in Developed and Emerging Markets. Finanse I Prawo Finansowe, 3(27), 25–61. https://doi.org/10.18778/2391-6478.3.27.02
Bouri, E., Molnár, P., Azzi, G., Roubaud, D., & Hagfors, L. I. (2017). On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?. Finance Research Letters, 20(C), 192–198. https://doi.org/10.1016/j.frl.2016.09.025
Bouri, E., Gil-Alana, L. A., Gupta, R., & Roubaud, D. (2019). Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks. International Journal of Finance & Economics, 24, 412–26. https://doi.org/10.1002/ijfe.1670
Bouri, E., Shahzad, S. J. H., Roubaud, D., Kristoufek, L., & Lucey, B. (2020). Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. The Quarterly Review of Economics and Finance, 77, 156–164. https://doi.org/10.1016/j.qref.2020.03.004
Cajueiro, D., & Tabak, B. (2004). The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient. Physica A: Statistical Mechanics and its Applications, 336(3), 521–537. https://doi.org/10.1016/j.physa.2003.12.031
Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency market. Research in International Business and Finance, 46(C), 141–148. https://doi.org/10.1016/j.ribaf.2018.01.002
Chowdhury, M. A. F., Abdullah, M., Alam, M., Abedin, M. Z., & Shi, B. (2023). NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis. International Review of Financial Analysis, 87(C). https://doi.org/10.1016/j.irfa.2023.102642
Czarnecki, Ł., Grech, D., & Pamuła, G. (2008). Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market. Physica A-statistical Mechanics and Its Applications, 387, 6801–6811. https://doi.org/10.1016/j.physa.2008.08.019
Czekaj, J., Woś, M., & Żarnowski, J. (2001). Efektywność giełdowego rynku akcji w Polsce. Z perspektywy dziesięciolecia. Warszawa: Wydawnictwo Naukowe PWN
Diniz-Maganini, N., Diniz, E. H., & Rasheed, A. A. (2021). Bitcoin's price efficiency and safe haven properties during the COVID-19 pandemic: A comparison. Research in International Business and Finance, 58, 101472. https://doi.org/10.1016/j.ribaf.2021.101472
Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486
Fernandes, L. H. S., Bouri, E., Silva, J. W.L., Bejan L., & de Araujo, F. H. A. (2022). The resilience of cryptocurrency market efficiency to COVID-19 shock. Physica A: Statistical Mechanics and its Applications, 607. https://doi.org/10.1016/j.physa.2022.128218
Hileman, G., & Rauchs, M. (2017). Global cryptocurrency benchmarking study. Cambridge Centre for Alternative Finance. Retrieved from https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/2017-04-20-global-cryptocurrency-benchmarking-study.pdf
Hkiri, B., Bejaoui, A., Gharib, C., & Al Nemer H. A. (2021). Revisiting efficiency in MENA stock markets during political shocks: evidence from a multi-step approach. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e08028
Hull, M., & McGroarty, F. (2014). Do emerging markets become more efficient as they develop? Long memory persistence in equity indices. Emerging Markets Review, 18(C), 45–61. https://doi.org/10.1016/j.ememar.2013.11.001
Jiang, Y., Nie, H., & Ruan, W. (2018). Time-Varying Long-Term Memory in Bitcoin Market. Finance Research Letters, 25, 280–284. https://doi.org/10.1016/j.frl.2017.12.009
Khuntia, S., & Pattanayak, J. (2020). Adaptive Long Memory in Volatility of Intra-day Bitcoin Returns and the Impact of Trading Volume. Finance Research Letters, 32, 101077. https://doi.org/10.1016/j.frl.2018.12.025
Kosc, K., Sakowski, P., & Ślepaczuk, R. (2019). Momentum and contrarian effects on the cryptocurrency market. Physica A: Statistical Mechanics and its Applications, 523, 691–701. https://doi.org/10.1016/j.physa.2019.02.057
Kristoufek, L. (2010). Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals. Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, 4(3), 315–329. Retrieved from https://www.researchgate.net/profile/LadislavKristoufek/publication/227360892_Rescaled_Range_Analysis_and_Detrended_Fluctuation_Analysis_Finite_Sample_Properties_and_Confidence_Intervals/links/0fcfd50ddb6e3bdcf5000000/Rescaled-Range-Analysis-and-Detrended-Fluctuation-Analysis-Finite-Sample-Properties-and-Confidence-Intervals.pdf
Kristoufek, L. (2018). On the Bitcoin market inefficiency and its Evolution. Physica A: Statistical Mechanics and its Applications, 503, 257–262. https://doi.org/10.1016/j.physa.2018.02.161
Kumar, D., & Zargar, F. N. (2019). Informational inefficiency of Bitcoin: A study based on high-frequency data. Research in International Business and Finance, 47, 344–353. https://doi.org/10.1016/j.ribaf.2018.08.008
Lim, K. P., Brooks, R. D., & Kim, J. H. (2008). Financial crisis and stock market efficiency: Empirical evidence from Asian countries. International Review of Financial Analysis, 17(3), 571–591. https://doi.org/10.1016/j.irfa.2007.03.001
Lo, A. W. (2004). The Adaptive Markets Hypothesis: Market Efficiency from an Evolutionary Perspective. The Journal of Portfolio Management, 30(5), 15–29. Retrieved from https://www.researchgate.net/publication/228183756_The_Adaptive_Markets_Hypothesis_Market_Efficiency_from_an_Evolutionary_Perspective
Mensi, W., Sensoy, A., Vo, X. V., & Kang, S. H. (2022). Pricing efficiency and asymmetric multifractality of major asset classes before and during COVID-19 crisis. The North American Journal of Economics and Finance, 62(C). https://doi.org/10.1016/j.najef.2022.101773
Mizerka, J., Stróżyńska-Szajek, A., & Mizerka, P. (2020). The role of Bitcoin on developed and emerging markets—on the basis of a Bitcoin users graph analysis. Finance Research Letters, 35. https://doi.org/10.1016/j.frl.2020.101489
Mnif, E., Mouakhar, K., & Jarboui, A. (2023). Energy-conserving cryptocurrency response during the COVID-19 pandemic and amid the Russia–Ukraine conflict. Journal of Risk Finance, 24(2), 169–185. https://doi.org/10.1108/JRF-06-2022-0161
Phiri, A. (2022). Can wavelets produce a clearer picture of weak-form market efficiency in Bitcoin? Eurasian Economic Review. Eurasia Business and Economics Society, 12(3), 373–386. https://doi.org/10.1007/s40822-022-00214-8
Plastun, A., Kozmenko, S., Plastun V., & Filatova, H. (2019). Market anomalies and data persistence: The case of the day-of-the-week effect. Journal of International Studies, 12(3), 122–130. https://doi.org/10.14254/2071-8330.2019/12-3/10
Polasik, M., Piotrowska, A. I., Wisniewski, T. P., Kotkowski, R., & Lightfoot, G. (2015). Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry. International Journal of Electronic Commerce, 20(1), 9–49. https://doi.org/10.1080/10864415.2016.1061413
Rufino, C. C. (2023). On the Volatility and Market Inefficiency of Bitcoin During the COVID-19 Pandemic. DLSU Business & Economics Review, 32(2), 23–32. Retrieved from https://www.dlsu.edu.ph/wp-content/uploads/2023/04/2rufino-040323.pdf
Shahzad, S. J. H., Bouri, E., Roubaud, D., Kristoufek, L., & Lucey, B. (2019). Is Bitcoin a better safe-haven investment than gold and commodities? International Review of Financial Analysis, 63, 322–330. https://doi.org/10.1016/j.irfa.2019.01.002
Tovanich, N., Soulié, N., & Isenberg, P. (2021, April). Visual analytics of bitcoin mining pool evolution: on the road toward stability? 3rd International Workshop on Blockchains and Smart Contracts held in conjunction with the 11th IFIP International Conference on New Technologies, Mobility and Security, France, Paris, 1–5. https://doi.org/10.1109/NTMS49979.2021.9432675